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PREFACE

Following some initial contact between the Naval Space Command and the Scientific Research
Center "Kosmos" in Moscow in 1993, the first U.S. Russian Space Surveillance Workshop was
hosted by the U.S. Naval Observatory in July 1994. This initial workshop led to the suggestion
for the second workshop.

The second U.S. Russian Space Surveillance Workshop was planned and scheduled to
coincide with IAU Colloquium 165 on the Astrometry and Dynamics of Natural and Artificial
Celestial Bodies held in Poznafi, Poland 1-5 July 1996. The workshop had a common program
on 4 July and a separate program on 5 and 6 July. The proceedings of Colloquium 165 are
being published separately by Kiuwer Academic Publishers and edited by Drs. Wytrzyszczak,
Lieske, and Mignard. The papers from this workshop are enclosed as separate proceedings.
Special attention should be given to the summary and conclusions from the workshop.

Translations for the workshop were handled by astronomers Dr. Alexander Krivov of St.
Petersburg University and Dr. Sergei Rudenko of the Main Astronomical Observatory of Kiev.
The excellent performance of these translators significantly contributed to the success of the
workshop and proved to be a major improvement over the professional translators used at the
first workshop in Washington.

The excellent local arrangements and administrative matters for the workshop were handled by
Dr. Iwona Wytrzyszczak. Particular thanks are due Mr. Marcin Gromadzifiski of the
Astronomical Observatory in Poznafi for the design and production of the cover for this
proceedings volume.

We gratefully acknowledge the support of the Naval Research Laboratory, the United States
Naval Observatory, the United States Air Force European Office of Aerospace Research and
Development, the Office of Naval Research Europe, and the United States Army Research and
Development Standardization Group, Europe, for their contribution to the success of this
workshop.

These workshops have demonstrated a progression in improved communication, and the
benefits both countries can achieve from learning from the other. As a Russian commented,
"God has provided only one truth; the two countries are approaching that truth by different
paths." The Russian delegation invited the participants to the next workshop in Moscow in
1997. The benefits of the continuation of the dialogue are hopefhlly evident to all, and
subsequent workshops are strongly recommended.

•P. K. Seidelmann



A.I. Nazarenko, G.M. Chernyavskiy
Center for Program Studies, Russian Academy of Sciences

Evaluation of the Accuracy of Forecasting Satellite Motion in the
Atmosphere

1. Introduction
The problem of increasing the accuracy of forecasting the motion in the

atmosphere arose since the time of launching of the first Soviet AES in 1957.
The practice of forecasting the motion of early satellites has shown high
roughness of the upper atmosphere knowledge at that time (possible
differences in the density amounted several times).

As early as at the end of fifties it was shown (M.L.Lidov, "ISZ", iss. 1,
1958; P.E.Elyasberg, "ISZ", iss. 1, 1958) that the upper atmosphere density
(UAD) values can actually be updated from the satellite drag data. This
fundamental result greatly influenced the methodology and results of
constructing the UAD models. A further development of UAD models and an
improvement of satellite motion models have occurred in parallel and
interdependently. The increasing of UAD models accuracy gave rise to
effective development of equations integration techniques and to the
improvement of motion forecasting accuracy, which, in its turn, has allowed to
rise a quality of UAD evaluations derived from the satellite drag.

The atmospheric drag is now taken into account in satellite motion
forecasting by regular (in time) fulfillment of the following main operations:

- the use of the UAD model for calculating the drag (acceleration) of a
satellite, w, at various points of trajectory

w = p.k.V2 , (1)
where p is the atmospheric density, k is the ballistic factor, V is the satellite
velocity with respect to air;

- the integration of the equations of satellite motion with taking into
account the acceleration w;

- the determination of ballistic factor k from the measurement data
along with the six elements of the orbit.

There are some modifications and simplifications of the drag accounting
technique, but they do not have principal character.

A noticeable feature of the development of UAD models and methods of
forecasting the motion of low-altitude satellites is the fact, that, whereas
considerable successes have been achieved in constructing the UAD models
(the accuracy was increased by an order of magnitude), these "successes" are
much more modest with respect to the models of motion. Even for two
decades at least the generally accepted estimation of possible forecasting
errors remains equal to 10 to 20 % of the atmospheric drag value over the
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forecasting interval. What is the reason of such a delay in forecasting
techniques development? This question may be answered by the detailed a
priori and a posteriori analysis of forecasting errors. It is these issues, which
are considered below in this report.

A characteristic feature of the applied technique of taking into account
the atmospheric drag lies in the fact, that the estimation of factor k, obtained
in orbit updating from measurement data, is in its essence the coefficient of
concordance between the measurement data and the model (1). This
circumstance is characterized by the following relationship:

Preal " kreal ' Pmodel , k. (2)
where the real and model values of quantities are marked by corresponding
subscripts. This implies, that the estimation of k includes the influence of
errors of the UAD model applied. It is also obvious, that the constant UAD
model errors (i.e. the increase or decrease of the model density in comparison
with the real one as much as several times) does not have any effect on the
forecasting accuracy. These errors of the model are balanced by corresponding
change in the estimation of k, so that equality (2) is hold. In the opposite
case, i.e. when the Preal / Pmodel ratio varies in time, equality (2) will not

be hold, which will result in additional motion forecasting errors related with
the inaccuracy of description of model density variation in time. So, the main
attention in analyzing the forecasting errors for low-altitude satellites should
be paid to the variability of atmospheric density in time.

2. A posteriori accuracy estimation
The below results have been outlined in papers [1, 21. The accuracy

estimation technique was as follows. The multiple forecasting of satellites
motion was carried out. The initial and reference data were taken from the
massif of orbital elements accumulated in the Russian Space Surveillance
System. This massif was gathered in the year 1989 over the time interval
form May 25 through September 20 during the PION satellites experiments.
The massif consisted of 25000 sets of orbital elements determined for 64
satellites. The distribution of perigee heights of these satellites is given in
Table 1.

Table 1. Distribution of the accumulated orbital data
Heights,km 150-200 200-250 250-300 300-350 350400 400-450 450-500
Frequency 0.007 0.067 0.189 0.203 0.398 0.122 0.014

The geophysical situation over this time interval was characterized by
the variation of solar activity factor F10.7 within the range of 157 to 335 units
and by the variation of three-hour geomagnetic activity indices kpwithin the

limits of 0 to 8 numbers.
The initial elements for predictions (including also the ballistic

coefficient) were determined over the diurnal interval preceded the moment of
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their estimation. With the use of the results predicted for 1 - 6 days' intervals
discrepancies 5t of the time of crossing the equator were estimated. Since the
absolute meaning of discrepancies 5t are changing within very broads limits
(by 2 or 3 orders) depending on the prediction interval, the values of ballistic
factors, altitudes and other factors, the errors were standardized in order to
obtain a more homogenous bank of accuracy parameters:

4 = (3)

Here o 2 is the variance of errors of time determination under initial
conditions, 5 ta is disturbing influence of the atmosphere. Indicator (3) was
chosen in such a way, that the values of og were of the same order for
various forecasting intervals.

For the forecasting intervals of the order of some days the condition
10.16 ta, >> -2. is fulfilled for low-altitude satellites. Since the error Mt in
the numerator of expression (3) has usually the order of 10 % of atmospheric
disturbance 5 t., the variance of indicator (3) will not considerably differ from
I in this case. Thus, under these conditions indicator (3) does not actually
differ from the estimations expressed in fractions of atmospheric disturbance.
The 10 % level of the root-mean-square (RMS) forecasting error corresponds
to estimation ao=l; the 20 % level of RMS error corresponds to o;=2, e.t.c.

For short forecasting intervals, when 0.16 tal < N'o, the estimation of o•
will be of the same order, since in expression (3) the variance of a numerator

is close to the square of a dominator: E(8 t 2 ) = 2a2. This allows to avoid
strong distortions of a traditional indicator for short forecasting intervals.

The forecasting of motion was performed with using the numerical-
analytic algorithm developed by V.S.Yurasov 131. This algorithm possesses
rather high accuracy characteristics and high operation speed. This allowed to
process a large orbital data massif for reasonable time. The atmospheric
density was calculated in forecasting by using the dynamical model [41. Three
versions of techniques were applied for taking into account the solar and
geomagnetic activity data, which correspond to different possibilities of taking
into account the time variation of the atmospheric density. These versions are:
Version 1. Values of F10.7 and kp indices were supposed to be constant (the
most widely spreaded technique).
Version 2. The current values of indices throughout the time interval were
applied.
Version 3. Some corrections found by special technique [5, 6, 71 were added
to the density calculated in accordance with point 1, namely:



p(t) = Pmodel I + +-(t (4)

P

Each of three above-mentioned techniques was applies both on a
forecasting interval and in updating the initial conditions (including the
previous orbital data),

Let us consider the influence of forecasting interval within the range of
I to 6 days on the indicator (3). The obtained experimental data (averaged
over all considered satellites) are presented in Table 2.

Table 2. Values of indicator aý

Forecasting 1 2 3 4 5 6 On the

interval, days average
for 1 - 6

days
1 2.66 2.20 2.12 2.15 2.13 2.17 2.26

Technique 2 1.52 1.27 1.17 1.19 1.20 1.23 1.27
3 1.31 1.14 1.10 1.07 1.10 1.11 1.15

Number of 858 914 774 814 658 714 4759
implementations

These data suggest, that the application of normalization (3) did not
allow to exclude the influence of forecasting interval completely. However, the
remaining influence is insignificant. Over the interval of 2 to 6 days the
amplitude of scattering of indicator aý equals 2 to 4 % of the mean value.

This deviation is more nQticeable on the first day only: it reaches 15 to 20 %
in this case. The applied technique strongly influences the level of errors. It is
seen that for versions 2 and 3 the errors are 1.8 to 2.0 times lower than in
version 1. This lowering is explained by taking into account the atmospheric
density variations correlated with geomagnetic activity indices. It is also seen
that the atmosphere model accuracy can be increased, if the variations are
taken into account in a more complete manner.

Of considerable interest is to study, how does indicator aý depend on
various factors. The analysis of experimental data has shown, that the main
influencing factors are:
1. The satellite perigee height h. The influence of this factor follows from the

well-known altitude dependence of atmospheric density variations
correlated with indices F10.7 and kp[4].

2. The level of geomagnetic disturbances, which is proposed to be
characterized by a sum of three-hour k- indices of geomagnetic

disturbance ykp on a day interval preceded the moment of attributing

initial conditions. The action of this factor is also associated with the well-
known influence of geomagnetic disturbance on atmospheric density
variations.

9



3. The relative time variability of satellites' ballistic factors. The influence of
this factor is obvious in connection with the fact, that the drag force (1) is
proportional to the ballistic factor. Quantitatively, this factor was
characterized for each of considered satellites by the RMS value of relative
discrepancies between current and mean values of ballistic factors:

A k-k 8p (5)

K p
The 0a values were found to be varied for various satellites within

broad limits: from 0.001 to 0.30. This is explained by the diversity of
geometric characteristics of satellites and by the variation of their position
with respect to the velocity vector.

The obtained experimental data on forecasting errors in various
conditions (for various values of influencing factors) were approximated by the
dependence

o•(hY2kp,aA) =ý .fl 2 (h,Fkp) .f 3 (qa). (6)

The values of 6 are presented in the right column of Table 1. Function

f 12(hZkp) were constructed for each of three versions of considered

techniques. The f3(,aA) function is common for all techniques. As a result, we
have determined:

f3(c;A) = 0. 63 7 + 2 .14 2 .-o. (7)
The obtained estimations of coefficients of function (7) show that, as

this factor varies within, the aforementioned range of values the forecasting
errors increase as much as 2 times.

The influence of first and second factors is characterized by the data of
Table 3 which are calculated for the fixed value of the third factor (oA=0).

Table 3 Values of factor at(h,Xkp) =-- •f 12 (hX, kp)

Skp T echni- Perigee height, km

que 160 200 240 280 320 360
1 0.58 0.73 0.87 1.02 1.17 1.31

10 2 0.52 0.53 0.55 0.60 0.65 0.71
3 0.57 0.48 0.46 0.51 0.63 0.81
1 1.01 1.25 1.51 1.78 2.01 2.27

25 2 0.79 0.80 0.83 0.89 0.97 1.07
3 0.73 0.62 0.59 0.65 0.80 1.04
1 1.58 1.97 2.36 2.76 3.15 3.55

40 2 1.09 1.10 1.15 1.23 1.34 1.48
3 0.98 0.83 0.79 0.87 1.07 1.39
1 2.07 2.59 3.11 3.63 4.15 4.66

55 2 1.60 1.62 1.69 1.81 1.96 2.17
3 1.32 1.12 1.07 1.19 1.46 1.88
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The Table 3 data show that the RMS values of indicator (3) vary within
broad limits: the maximum differs from the minimum 8; 4.2 and 4.0 time,
respectively, for the techniques under consideration. It is natural, that the
errors grow with the geomagnetic activity level (I kp) and height h. The third

version of techniques slightly declines from this rule. Here the altitude
dependence has a minimum in the altitude range of 200 to 280 kin, which is
explained by a great amount of data on the variations at these altitudes and
provides the highest effect: the three-fold increase of accuracy as compared to
the first version of techniques.

At low altitudes and low solar activity level all techniques show about
the same accuracy (a; = 0.5 - 0.6). Under these conditions the RMS

forecasting error equals 5 to 6 % of the atmospheric disturbance value. At
higher altitudes and for a considerable geomagnetic activity the difference
between accuracies of techniques grows. The maximum values of factor 0ý
are 4.7, 2.2 and 1.9 for the first, second and third technique, respectively.
These quantities correspond to RMS estimations of forecasting errors equal to
47%, 22% and 19% of the atmospheric drag value, respectively.

3. A priori estimation of accuracy
The modern idea of the mechanism of appearance of the errors of

forecasting the satellite motion in the atmosphere [1, 81 is based on the
stochastic approach. As a source of errors, one considers the random process

= P eal - Pmodel (8)
Pmodel

which reflects the deviations of actual density from the model one. The X(t)
process is usually assumed to be Gaussian, stationary one, which has a
correlation function

K (t) = - exp(- ltf), (9)

where a2 is the variance, a is the parameter, t is the time interval.

The content of known techniques of a priori estimation of the accuracy
is reduced to re-calculating the influence of variations (8) on the time
forecasting error. In so doing the determination of orbital parameters form the
measurement data is carried out with using the well-known techniques (such
as the least-square method, Kalman filter). In our opinion, this issue is
outlined in the most compete manner in paper [11 of one of authors of this
report. The main results of this paper are presented below.

In using three above-mentioned density calculation techniques, which
differ in accounting the atmospheric density variations, the following values of
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aY and a parameters are recommended, which are determined from the a

posteriori accuracy analysis:

Table 4. Values of parameter a.
X kP Techni- Perigee height, km_

que 160 200 240 280 320 360
1 0.082 0.103 0.123 0.144 0.165 0.185

10 2 0.073 0.075 0.078 0.084 0.092 0.100
3 0.080 0.068 0.065 0.073 0.088 0.113
1 0.142 0.177 0.216 0.250 0.283 0.319

25 2 0.111 0.116 0.118 0.125 0.136 0.150
3 0.103 0.087 0.083 0.092 0.114 0.146
1 0.222 0.277 0.332 0.388 0.433 0.499

40 2 0.154 0.156 0.162 0.173 0.188 0.208
3 0.138 0.117 0.111 0.123 0.151 0.196
1 0.291 0.364 0.437 0.510 0.582 0.655

55 2 0.225 0.228 0.237 0.254 0.275 0.305
3 0.186 0.158 0.151 0.167 0.205 0.265

t = 0.24 1/day P 0.015 1/revolution.
Some authors have successfully applied simplified equations of motion

for evaluating the influence of disturbances on time parameters (the errors
along the trajectory). In this case the state vector includes only the elements
which characterize the motion in the plane of a near-circular orbit. Following
this approach, we take the angular motion of a satellite in revolutions N as an
argument, and as the state vector components we use the following elements:
the time moment tN corresponding to the trajectory point with the given
latitude argument, and the period of revolution TN. The following equations
are valid for these variables:

dtN = .TN; dTN1  (10)
dN dN

Quantity t17 has a meaning of period variation during one revolution. It
is supposed to be associated with the atmospheric drag only. In this case (for
constant k) the value of t7 is proportional to the atmospheric density and, as
follows from dependencies (1) and (8), may be presented as

"t'(N) -- tim. (1 + X(N)), (1

where t m is the mean value, and X(N) is the Gaussian random quantity
having correlation function (9). The data source are supposed to be the direct
measurements of time of trajectory points Ni:

z(Ni) = t(Ni) + v(Ni), (i=1,2,...), (12)
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where the measurement error v(Ni) (of discrete white noise type) is
distributed according to the normal law with zero mathematic expectancy and

variance a 2 The time interval between the measurement time moments is
assumed to be constant and equal to AN (revolutions).

The above regularities of variation of time parameters (10), (11), the
model of measurements (12) and statistic characteristics of random processes
X(N) and v(Ni) allow to determine the correlation matrix of state vector
errors and, in particular, the variance of errors of forecasting the time of
intersection of the given latitude (the equator, for instance). The least errors
are achieved with using the optimum algorithm of state vector estimation
from measurements. In this case the Kalman-Bjucy discrete filter is optimal in
the root-mean-square sense. Here, the forming filter

dNX
dN X ,(13)

is used for the "color" noise X(N), where w is the white noise. Here
parameter a has the dimension of I/revolution and equals ; 0.015. Quantity
X(N) is assumed to be the third state vector component. As a result, the
equations for a three-dimensional state vector x are expressed as follows:

dx =A. x (14)
dN

0 10 0
where A=0 0 1, 0.

0 0-a IM

The white noise intensity is determined by the relation aw = j2aax

Now we shall apply for correlation matrices of vector x(N) at the (i-1)th
and ith steps of measurements processing the traditional designations:
Pj-l/-1j and Pi/ij-. These matrices are calculated from the well-known
recurrent filter equations:

piiN 1 (A~ 2 7T'
p_ 11i 1p ,T(AN\) + f .tD(N 1 - 4)B 'B (D15)

N1 1

I = (P- + a-2h)-,

where O(AN) is the fundamental matrix of solutions of equations (14),
h=I1l 0 01.

The correlation matrix of state vector at the correction time is
determined from the condition of steady-state filtering regime

13



Pili = Pi-li-1 ,= P. For convenience of subsequent analysis the normalization
of P and Pi/i-jmatrices is applied:

Ic1l k12 k13

K 12 kc22  kc23  = 02 P ? 16k13  k23 k33  0 (16)

K(O) = 2 P1 /i-j = (D(r) K 1T(%) + c2Q(T).
2

Here %=a.AN, (17)

1 AN 12[1- c + exp(-,O)
a

q11 0 1 1 111- exp(-x-)] ,(18)

0 0 exp(-1')

!(x + )_(19)

q1= q12  q13

Q() q12  q22  q23  (20)

q13  q23  q330

q= {21C3 3 -1~2 + 211 - exp(t) -'E 't exp(-i~ - [' -1 + exp(.-i)12} La4 ,

q12  1% - I+ exp(-tE)]2  a3,

q] 3 = 1 - 2-1 exp(-s) - exp(-2r)] I cc

q 22 2- - 3 + 4 exp(-%) -exp(-2'c)I a,

q23 =[I exp(-tE)12 Ia.
q3 11 - exp(-2E)].

With taking into account the above normalization, the filter equation for
matrix Pi/i can be transformed to the form:

(I+ ki 0)1

K=-k 12(1 + k1 1)l1 K(c). (21)

-k13(1 +'kj-

The convenience of application of a system of equations (16), (21) lies

14



in the fact, that its solution with respect to matrix K depends only on three
dimensionless parameters (x, AN and c. Parameter (x characterizes the system
whose motion is investigated, AN - the measurement regime, c is the signal-
to-noise ratio.

Equations (16) and (21) are easily solved with respect to matrix K by
means of iterations. Some approximation of matrix K is used for calculating
matrix K('r) based on relation (16). Then, the new approximation of matrix K
is determined by means of expression (21), etc. The required number of
iterations depends on the value of parameter c. The process is well converged
in cases of practical interest. And the convergence is slow at small values of
parameter c only (i.e. for c<< 1). In the limit, for c=>O, matrix K also tends to
zero.

Once matrix K is determined, the variance of errors of forecasting for
any number of revolutions n is easily calculated by means of relation (16) for

a2(n) = o2 -KI(cc n). (22)
Here KI(t n) is the corresponding element of matrix K(i).

The following quantities are used as initial data: Tm, AN, a, ax, a and

n. Two of these quantities, namely a and oa, are associated with the main
source of errors - the atmospheric density variations.

As an example of a priori accuracy estimations, we shall present the
results of calculations similar to the data of Table 2. These results, as well as
the initial values of a., are given in Table 5.

Table 5. A priori estimations of factor aý(n)
Forecasting 1 2 3 4 5 6

interval, days
1 2.65 2.25 2.16 2.13 2.11 2.10 0.32

Technique 2 1.50 1.28 1.23 1.22 1.21 1.20 0.18
3 1.37 1.17 1.13 1.11 1.11 1.10 0.16

The comparison of these results with the Table 2 data shows their well
coincidence. The discrepancies do not exceed 5 %.

Using the above technique of a priori estimation of accuracy, one can
obtain the lower estimation of possible forecasting errors corresponding to
ideal (hypothetical) conditions of absolutely accurate estimation of current
density variations for the time of initial conditions used. In this case the
equalities o=0, K =0 are met. The above expressions easily lead to the
following formula:

Y= 20.c • (/q 1I(an)) / n2 . (23)
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Table 6 below presents the results of calculations by this formula. These
results are similar to those given above in Tables 2 and 5.

Table 6.
A priori estimations of factor aý(n) for ideal conditions Forecasting

Interval, days 1 2 3 4 5 6

1 0.93 1.23 1.42 1.54 1.63 1.69 0.32
Technique 2 0.52 0.69 0.80 0.87 0.92 0.96 0.18

3 0.46 0.62 0.71 0.77 0.82 0.85 0.16
The comparison of these results with the data of Tables 2 and 5 indicates that
essential reserves for increasing the accuracy exist for relatively short
forecasting intervals only: from 2 to 3 days. For these conditions the accuracy
can be potentially increased up to 2 - 3 times. For the 6-day forecasting
interval and with using the most perfect techniques (No 2 and 3) the possible
accuracy increasing reserve does not exceed 25 to 30%.

4. Conclusion
The materials presented in this paper lean mainly 'upon the results of

studies carried out before the years 1990 - 91. We did not know any later
results in this area. Therefore, the recommendations given here still remain to
be topical.

Using the vast statistics on the forecasting the motion of low-altitude
satellites, the authors have constructed the a posteriori empirical model of
errors, which takes into account the technique applied in forecasting as well as
the dependence of errors upon the satellite altitude, geomagnetic activity level
and variability of ballistic factors. It is shown that, as compared to a widely-
used technique that does not take into account the variation of geophysical
conditions over the measurement data processing and forecasting interval,
there exist realistic possibilities of increasing the accuracy up to 2 - 3 times.
These possibilities are based on taking into account the atmosphere density
variations correlated with solar and geomagnetic activity indices.

The theoretical model of forecasting the errors is constructed on the
basis of a stochastic perturbation theory. The results of its application are
shown to be in a rather well correspondence with the a posteriori analysis
data. This model was used for estimating the forecasting errors under ideal
hypothetical conditions, when the density variations at the given initial point
are known accurately. For 2 to 3-day forecasting intervals the errors can be
reduced down to 2 - 3 times. For the 6-day forecasting interval and with using
the most perfect techniques the possible accuracy increasing reserve does not
exceed 25 to 30 %.
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Technology of evaluation of atmosphere density variation
based on the Space Surveillance System's orbital data

1. Introduction
The analysis of numerous data on the atmospheric drag of various

satellites has shown that these estimations vary synchronously in the most
cases: they increase and decrease simultaneously. Obviously, such a
synchronous variation of satellites' drag estimations is due to the same reason:
the atmosphere density variations. That's why such estimations have been
widely used for constructing the modern atmosphere density models [l].

The traditional use of drag estimations is characterized by the fact that
they allowed to determine relatively slow atmosphere density variations
correlated with the month cycle of solar activity and were not applied for
determining short-periodic variations related with the change of geomagnetic
indices. There are some reasons of such a situation, the main of which lies in
the averaged character of traditional drag estimations, i.e. in their insufficient
time resolution.

Since the very beginning of the existence of Russian Space Surveillance
System (RSSS) the characteristics of satellites drag in the atmosphere (the
change of a period for one revolution -or the ballistic factor) were included into
the set of parameters to be improved as the seventh element of the orbit. This
allowed to decrease the level of a priory uncertainty of the atmospheric drag
value and, as a result, - to increase the forecasting accuracy.

The detailed analysis of the RSSS satellite drag data has shown rather
high time resolution of latters, which allows to estimate short-periodic
atmosphere density variations (Figure 1). These possibilities arose as a result
of a series of investigations aimed at updating the orbit improvement
techniques using the measurements. In particular, the generalization of the 2oG
Kalman filter for the case of "color" noise of a system was proposed 12, 3Van--
the numerical-analytical techniques of satellites motion forecasting were
developed [4, 5 1. This made it possible to increase the orbit determination
accuracy for low-altitude satellites. It was the basis, on which the technique of
constructing the atmosphere density variation model from the RSSS data was
developed in the early eighties [6].

2. The technique of constructing the atmosphere density variations
2.1. General scheme of problem solution
The actual atmosphere density is presented as a sum of the value,

calculated by the model Pmodel, and variation 8p:
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Figure 1. The relative variations of the atmosphere density
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p(t) = Pmodel + 5 P = Pmodel ( + (t). (1)
Pmodel

Here the model density is calculated for constant indices of solar and
geomagnetic activity. The principal scheme of obtaining the estimations
6P /Pmodei and their application is presented in Figure 2.

The orbital measurements of satellites come to an input of data
processing algorithms. The orbital elements (9) and the estimations of drag
characteristics (ballistic factor k, for instance) of various satellites are obtained
at an output. These data, accumulated on some interval, are used for
constructing the model of atmosphere density variations 8P /Pmocdel" The
application of these estimations in accordance with formula (1) for calculating
the density by integrating the equations of motion allows to take into account
the found density variations during the process of forecasting the motion of
objects and, thus, to increase the forecasting accuracy.

2.2 Basic relations
Let us consider the change of a satellite period Vr for one revolution

under the atmosphere effect to be the drag characteristics of a satellite. The
real value of this quantity can be expressed as follows:

Treai = krea1.(pp)reaji (a). (2)

Here kreal and* (PP)real are real values of ballistic factor and

atmosphere density at the perigee of this satellite, respectively. f(9) is some
function of orbital elements. The value of t, determined from the data of
imp)rovement of orbital. elements, differs 'from (2) in using the known
es'i imations of quantities, rather than their real values:

"'= k"(PP)model"- f(9) (3)

Quantity T is, in essence, the estimation of the real drag characteristics
(2). Introducing the relative error s of estimation t, the relation between
quantities (2) and (3) can be written as follows:

"trea = i" (1 +). (4)
Expressions (1) - (4) give rise to the following relation, for estimating the

relative density variation 8P /Pmodel from the drag data of the ith Satellite:

____ea k ___ k r ) - Ai. (5)

Pmodel rea i real

*One should note that the choice of this particular
characteristics is not a matter of principle.
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If the real value of ballistic factor kreal were known, the quantity in the
left-hand side of expression (5) could be considered to be the estimation of a
current atmosphere density variation from the drag data of the ith satellite. Let
us denote by ki the known estimation of a real ballistic factor of the ith
satellite. Then the estimation of a current relative variation of density from the
drag data of this satellite can be expressed as

8P (W 1 (6)
Pmodel (

2.3. Construction of the model of density variations on the (t 1 ,tj+t) interval
Let the model of atmosphere density variations on the interval under

consideration be presented as a function of the altitude of a point:

P hreaij P model,j = qb hq" (7)

On the interval - the density variations are supposed to be constant.
Then, in accordance with expression (5), the estimations (6) may be
considered to be indirect measurements of parameters bqj of the model of

variations. The number of these measurements nj is equal to a number of

estimations k (for various satellites) on the (tJ,tj+¶) interval. To estimate

the parameters bqj we shall'apply the least-square method. The criterion to be
minimized is written as

n.

I(bqj) = Pip A2, (8)
i=1

where for discrepancies between estimations (6) at some time moment
belonging to the (tj,t1 +t) interval and the values of variations calculated by
the model (7) we apply the following designation:

Ayj = Aij(bQj) =(I-) _ 1_ P(hi)model~j. (9)

kj P

The values of these discrepancies. depend on the unknown parameters
boi of the model. To take into account the features of separate satellites, the

weight coefficients pi are introduced into the quadratic form (8).
The above approach to constructing the variations model has some

assumptions and quantities .which have to be clarified additionally.
Note that the value of interval -c--3-6 hours and the form of model

representation as function (7) have been chosen as a result of numerous and
protracted model experiments from the condition of minimizing the errors of
estimation variations. The interval r should be minimized for improving the
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time resolution. However, this will res ult in decreasing the number of
measurements n1 and in lowering the accuracy of estimations of parameters

bqi. These recommendations have a compromise. character and reflect the
features and operation conditions of RSSS algorithms. The issues related to the
construction of estimations ki and to the choice of weight coefficients pi will
be discussed in the next Section.

The above technique is applied for operative evaluation of the
atmosphere density variations. The appropriate program is actuated
immediately after finishing the ordinary interval -r.
2.4. Use of the standard satellites for ballistic factors determination

The accurate enough a priori estimations of ballistic factors ki are
known only for spherical-shaped satellites with known size, mass, and outer
surface material. The orientation of such a satellite does not influence its
ballistic factor.

The values of dimensionless drag. coefficients Cx of these satellites are
determined from theoretical calculations or by wind tunnel tests. We shall call
these satellites standard ones. As a rule , the number of such satellites is
small - about some units. As a result, the determination of atmosphere density
variation (in a rather wide region of space and with acceptable time resolution)
from standard satellites' drag data is unsolvable problem.

For constructing the density variations we have proposed to use the drag
data for all objects, which exist in the altitude range up to 600 km for 1-2
months at least. Therefore, the problem of evaluating ballistic factors of all
non-standard satellites arose. This problem can be solved "against the
background" of standard objects only. If the latters are absent, the problem
also becomes unsolvable.

The estimations of ballistic factors of all non-standard satellites are
determined periodically: with the interval of about 1 month, as well as with the
appearance of new satellites in the region under consideration. The essence of
the algorithm is based on minimizing the quadratic form

ni

i ji=1
Here, not only the values of parameters btj at each of 'c intervals are

unknown, but the estimations k, of all non-standard satellites as well. This
problem is solved by means of successive approximations. The values of
unknown estimates are updated after each "run" over whole time interval. As
a result of this solution, the variances of residual discrepancies are formed for
each of satellites:
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2 1 max 2

imxj=1I
Weight factors pi are formed as a quantity reciprocal to variance (11).

3. Some data on the atmosphere density estimations and application
3. 1. Estimations of the atmosphere density variations
The above technique was applied for obtaining the current estimations of

atmosphere density variations since the end of 1982. Some 200-250
estimations for various satellites have been processed every day. The obtained
data have been analyzed in detail. In particular, various statistical
characteristics of variations at different altitudes were determined. These
characteristics include: mean values, variances, autocorrelation functions and
mutual correlation functions. The regression analysis was also carried out.
Some of results were published in papers [7, 8, 91.

Figure 3 presents, as an example, the obtained data on the development
of density variations at the 200-600 km altitudes during the geomagnetic
storm of 13 June, 1983. The intensive growth of geomagnetic activity was
observed at 00h UT on June 13. The values of K-indices increased from 3.3 to
6.3. At this time the corrections 5p /Pmodel were negative and equal to
0.26-0.32. The sum of 3-hour K-indices for a day was 42. In one day the
geomagnetic indices returned to their initial level, and the density increased:
the 8P /Pmodel corrections remained negative and were equal to 0.05-0.16.
On the next day the density continued to increase, at high altitudes especially.
The maximum of density was achieved at the evening on June 14. At altitudes
of 200, 400 and 600 km the corrections were equal to 0.05%, 45% and
100%, respectively. During the period of JAlne 15 through 17 the density has
decreased. The initial level was achieved first for low altitudes (200 km in the
morning on June 15) and only in the evening on June 17 - for high altitudes.

The obtained data were critically analyzed. In particular, the question on
the value of time delay of obtained estimations with respect to actual density
variations, was investigated.

3.2 Determination of time delay of density variations estimations
Two approaches - experimental and theoretical - were applied for solution

of this problem. In the first case the motion of various satellites was forecasted
on the interval, where density variations have already been determined. The
time delay At was introduced into the obtained estimates of variations at the
moment t, i.e. the 5P /Pmo.del (t-At) function was used in the drag calculation.
The statistic characteristics of forecasting errors were determined from a great
number of implementations for each of accepted delay values. That delay
value, which provides the minimum of forecasting errors, was assumed as an
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estimate. As a result, the quantity At,-0.5 days was determined (Figure 4).
This estimate was used subsequently in making forecasts.

In the process of theoretic studies [10] the authors have developed the
technique for constructing sensitivity characteristics of the program-
algorithmic RSSS system as a tracking system. Some of obtained results are
presented in Figure 5. One can see well coincidence of theoretic results with
simulation modelling data.

3.3. "PION" satellites investigations
Small "PION" satellites were specially designed for investigating the

atmosphere density variations. These satellites had spherical shape (33 cm in
diameter), and their ballistic factor was well known from the a priori data. By
this reason these satellites were taken as standard ones. 6 similar satellites
were launched in 1989 and 1992 (see Table 1). The data on this experiment
were published in a number of papers [11, 12, 13, 141. 25000 sets of orbital
elements and drag estimations were accumulated from 64 satellites with
perigee heights ranging from 150 to 520 km during the period from May to
September, 1989. Similar data were accumulated in 1992 as well. The detailed
analysis of this information provided some interesting results.

Table I
Satellite Year of Separation Weight, kg Lifetime,

X2 launching date days
1 1989 June 8 45.174 45
2 1989 June 9 44.570 45
3 1989 August 6 46.973 44
4 1989 August 7 47.250 43
5 1992 September 1 49.466. 24
6 1992 September 2 49.434 23

Figure 6 presents current estimations of ballistic factors for "PION-5"
and "PION-6" satellites. The synchronous variation of ballistic factors is clearly
seen, which proves that it is caused by atmosphere density variations.

The data on the distribution of a&j values, which characterizes the level
of residual discrepancies, are presented in Table 2.

Table 2
Range aoi, % <1 I-3 3-6 6- 10 10-15 15-20 >20

Frequency 0.07 0,15 0.23 0.38 0.07 0.07 0.03
It is seen that the aw value lies within the range of 3 to 10% for the

majority of satellites. For some objects is occurred to be less than 1%. One of
such objects (the international XN2 80037-1) have a shape of smooth ball and
rather big size (more than Im in diameter). Therefore, a relative great number
of measurements was obtained for this satellite. The number of accumulated
orbital elements was about 500. The example of data for this object is given in
Figure 7. Since the residual discrepancies were caused by the -errors in ballistic
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Figure 4. Forecasting errors - delay relation
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factor estimations and in density variations, the presented estimation of
discrepancies suggests, that these quantities were determined with errors of
the order of 1%. This result is unique, in our opinion. The obtained estimation
of errors is an order of magnitude lower, than traditional ideas on the level of
atmosphere density determination errors.

The data accumulated during this experiment were used also for
constructing the model of low-altitude satellites forecasting. The results of
these studies were published in paper [15] and have also been presented in one
of reports at our Workshop [161.

3.4. Determination of time and place of orbital complex "Salyut-
7/Cosmos-1686" reentry

In determination and forecasting the motion of orbital complex (OC) at
the last stage of its lifetime we have used the results of earlier investigations
of the atmosphere density variations [17].

At the end of January, 1991, a very high solar activity level F10.7 was
observed. On January, 31 (7 days before the complex reentry) these values
reached the highest level - 373 units. According to the variations monitoring
data, it was found that at the high F10.7 level the density model [18] gives
overestimated density values. By this reason just on January 31, 1991, the
correction was introduced into the model density calculations:

p(t) = Pmodel {1,- 0.001[F 10.7(t) - 200]}. (12)
This resulted in updating the model density by 10-17% and contributed to
increasing the motion forecasting accuracy.

In the night of February 5 to 6 the control of orbital complex orientation
was performed; namely the longitudinal axis of OC was aligned with the
velocity vector. At about 3hr on.February 6 the complex again transferred into
the uncontrolled flight. As a result of more correct determination, this was
clearly revealed in a sharp and early synchronous decreasing of estimations of
ballistic factor k from 0.003 down to 0.0027 m2 1kg, i.e. by 10%, and in
subsequent restoring of initial estimation even in the evening of February 6.
This result can serve as an experimental proof of the possibility of operative
control of variations of satellites' ballistic factors and atmosphere density
variations.

In the a posteriori analysis of orbital data of OC, obtained at the last
stage of its existence, the OC lifetime determination errors were estimated
with different methods (versions) of accounting the atmosphere density
variations.

In the first of these versions the density was calculated for constant
(mean) values of solar and geomagnetic activity indices.

In the second density calculation version the indices were supposed to be
known.

As an accuracy indicator, the quantity
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5t (13)

tr

was used. Here t r is the remaining lifetime of OC, 6t is the reentry time
determination error.

The obtained estimations of errors for these versions are given in
Figure8. 72 determinations were carried out for each of versions. The data
show that, when the density variations correlated with solar and geomagnetic
activity indices are taken into account, the level of errors is actually two times
lower than without accounting these variations. This result confirms once
again the conclusion about the considerable influence of density variations on
the SO motion forecasting accuracy.

3.5. Development of the technique of density variatfon forecasting
In order to reveal space-time regularities of the change of atmosphere

density variations, the technique of constructing the regression equations for
stationary random vector processes was developed [191. This technique has
rather general character and, therefore, it is acceptable Jor time series of
different nature.

In applying this technique for density variations investigation the four-
dimensional state vector was chosen. The components of this vector consisted
of density variations 5P /Pmodel at altitudes of 200, 250 and 300 km, as well
as of 3-hour K-indices of geomagnetic activity. The links of this vector (also
designated by zt) with its values at preceding time moments zt 1 l, zt_ 2 , etc.
were studied. The interval between discrete time moments was assumed to be
constant and equal to 3 hours.

Based on the analysis of accumulated data on variations, the following
regression equation was constructed:

zt = •D • Ztl+ (2 • zt_ 2 , (14)
where

1.273 -0.198 0.489 0.039 -0.307 0.057 -0.351 -0.023
0.134 1.131 0.460 0.025 -0.100 -0.410 -0.245 -0.005

0.079 0.215 1.292 0.032' 02 -0.070 -0.189 -0.359 -0.007
0.233 0.153 0.579 0.71.0 -0.224 -0.039 -0.569 -0.0061

4. Conclusion
The aforementioned technique of operative estimation of atmosphere

density variations with using the RSSS data allows to determine short-periodic
density variations correlated with the geomagnetic activity indices. The extra
The extra results of this technique application are the estimations of ballistic
factors of low-orbit satellites and characteristics of their variability. The
technique was applied over the 10-year time interval: from 1982 to 1992.
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A series of rather general techniques was developed for studying
dynamical systems. These techniques were applied for studying the
atmosphere density variations and include: 1) the Kalman filter generalization
for the case of "color" noise of a system; 2) the method of studying the
sensitivity of a system for tracking the motion of satellites; 3) the recurrent
method of constructing the autoregression equations for vector processes.

Based on obtained density variation estimations, a number of applied
investigations was carried out. The (2-3)-fold increase of satellite motion
forecasting accuracy, as compared to a widely-applied technique not taking
into account density variations, was demonstrated. The maximally achieved
accuracy of determination of satellites' drag characteristics was found to be at
the level of 1%, which is an order of magnitude better than commonly
accepted estimations.

The materials of this work represent the review of a study of atmosphere
density variations carried out over more than 10-year time interval by the
author and his business colleagues: Yu.P. Gorokhov, V.D. Anisimov, L.G.
Markova, R.V. Gukina, S.N. Kravchenko, V.S. Yurasov, V.A. Bratchikov and
others. The retrospective analysis of these works, taking into account a more
complete recent information on the state of this problem in Russia and other
countries, indicates that the obtained results still remain timely. Moreover, in
author's opinion, the possibility appeared for more extensive applying these
results in the interests of increasing the accuracy of determination and
forecasting the orbits of low-altitude satellites, as well as for the purpose upper
atmosphere monitoring.
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COMPARISON OF ATMOSPHERE DENSITY MODELS

T. Amelina, G. Batyr, V. Dicky, N. Tumolskaya, V. Yurasov

SRC "Kosmos", Moscow

The qualitative solution of many ballistic problems connected to
determination and prediction of low-Earth orbit space objects motion, is
impossible without use of precision models of the upper atmosphere density.
The upper atmosphere is very dynamical. Under influence of short-wave and
corpuscular solar radiation its density unregularly varies.

The modem atmosphere models take into account the most essential
variations of atmosphere density and enable to determine its value in a given
near-Earth space point for any moment of time if indexes of solar and
geomagnetic activity are known. The well known foreign models of the upper
atmosphere are CIRA-72, CIRA-86, MSIS, Jacchia, Barlier [1,2,3,4,5].
Practically all listed models are semi-empirical - for their development both
physical laws of atmosphere components distribution and empirical data,
obtained from direct and indirect measurements of its parameters were used.

In Russia the empirical atmosphere density models developed under
the leadership of Professor Volkov I. I. - GOST 22721-77 [6] and GOST
25645.115-84 [7] have got the most wide circulation for the solution of
ballistic problems. These models are constructed on the basis of processing
large volume of long-term data on atmosphere drag and have been constantly
updated by new'information. In the last edition of model GOST 25645.115-
84 atmosphere density is approximated by the following dependence

P = PHKoK1K2K3K4 ,
where
pH = a0 exp[al-_a2(h-a3) 1/22]

a0 = 9.80665 kg / m3

K0 = 1+(lI +12h+13h2 )XF1 -FO)KF,

K1 = 1 + (c, + c2h + c3h 2 + c4h 3 ) cOsP •
2"

n = no + n, (h),
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cosqp = (zsin g® +cosS® (xcosfi + ysin j8)) I r,

j8=a® + '1 ,

K2 = l+(d1 +d 2 h+ d3h 2 )A(D),

K3 = l+(bI +b2 h+b 3 h2 XF-F 8 1)/F,

K4 = 1+(e1 +e 2 h+e3 h2 +e4 h 3 Xe5 +e 6 KK +e7 K 2 ),

h - altitude above surface of the Earth ellipsoid;
a®,,®,- right ascention and declination of the Sun;

x, y, z - coordinates of a point of space;

r = 4x 2 +y 2  -_ distance from centre of the Earth to a point of space with
coordinates x, y, z;
pH - density of night atmosphere;

F0 - fixed level of solar activity for considered period oftime;

F- daily mean value of index F107 ;

F - value of F10.7 averaged for 81 day, previous to a moment of account;
81

Zk, F
F81 '=81

-F•1 = Zkj

k, = 0.5+ 05(i-1)/(N-1), N=81,i= 1,2,3,...,81.

F = F1 0 .7(t- rF);

K = K (t-);

p pF

F0o.7 - index of solar activity equal to 10.7 cm (2800 MHz) solar radiation

flux density;
K - daily mean planetary index of geomagnetic activity;

p
Ko - multiplier, describing change of atmosphere density, connected with a

deviation of F1 from Fo;

KI - multiplier, taking into account daily effect in density distribution;

K2 - multiplier, taking into account semi-annual effect;
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K3 - multiplier, describing change of atmosphere density connected with a
deviation ofF from F

K4 - multiplier, taking into account dependence between atmosphere density

and geomagnetic activity;
p- the central angle between the point of space for which density is
calculated and point of a maximum in its daily distribution;
,p - the angle of delay of density maximum with respect to maximum of light
flux;
A(D) - multiplier, describing influence of semi-annual effect on atmosphere
density;
rF, rK - factors, determining delay of reaction of atmosphere density to

variation of indexes F Kp;10.7' p'
D - days since the beginning of a year;
al,a2 ,a 3 ,bl ,b2 ,b 3 ,ll cl ,c2 e 3,e4 , e e e ,e e7

no0,nl, P- coefficients used for account of atmosphere density at various

values of F0 and h. The values of these coefficients are tabulared.

The basic advantage of this model is its simplicity and feasibility for its
computer realization. So, the calculation time for one value of density with
help GOST 25645.115-84 is two order less than appropriate time when using
foreign models. At the same time the accuracy of this model is comparable to
that of more sophisticated semi-empirical models. In particular, more than
twenty years of operation of the GOST models at the SSS, and also the
results of a number of special experiments on studying of atmosphere density
variations using satellite drag measurements [8-14] witness this. The RMS
relative errors of atmosphere density determination when using the GOST
model at altitudes of 200-500 kms make about 10 % in a quiet conditions and
reach 30 % during geomagnetic storms [8-14].

During the space surveillance process exists the opportunity of
reduction of influence of density calculation errors at altitudes of 200-500
kms for account of operative estimation and forecasting of density variations
with the help of information on atmospere drag of a group SO in proper area
of space [12-14].

At smaller altitudes such opportunity is practically away because of
short-term stay and small number of the satellites simultaneously being in this
area. Here the atmosphere is more inertial and its density variations under
changes of solar and geomagnetic activity emerge in a smaller degree.
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However, the accuracy of knowledge of atmosphere density at low altitudes
in many respects defines the accuracy of satellites reentry time determination
on a final stage of their flight. Therefore, not less urgent is the problem of
atmosphere density calculation accuracy increase at altitudes less than 200
kms. This, in particular, was confirmed by the results of the last works on
satellite "Cosmos-398" and FSW-1-5.

Within the framework of research of this issue comparison of three
atmosphere density models was made: GOST 25645.115-84, CIRA-86,
Jacchia-77. For models CIRA-86 and Jacchia-77 within the range of altitudes
of 90-200 kms relative deviations of atmosphere density values from those,
calculated on GOST 25645.115-84 for F10.7 =70 were determined.

The results of comparison of the models above at altitudes of 90-200
kms are submitted in figure 1.

Figure 1. Results of models comparison at altitudes of 90-200 kms
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20 S/ -.-~-- Jacchia-77
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-20
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Given in this figure are two altitude dependences of relative deviations
of atmosphere density values, calculated on models CIRA-86 and Jacchia-77
respectively, from the appropriate density on model GOST 25645.115-84 for
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levels of activity F10.7 =70. It can be seen, that the maximum differences

between models GOST 25645.115-84 and Jacchia-77 at altitudes 130-200 km
do not exceed 3 %, and at altitudes 110-120 kIn they reach 9 %. Thus, the
difference between these models at small altitudes can be considered
insignificant. At the same time CERA-86 produced density differs from that of
GOST 25645.115-84 almost by 25 %. These deviations have essential
dependence on altitude. It is very important, as far as, if they had had
systematic character and did not depend on altitude then their influence in
process of orbit determination and prediction would have been be difficult to
find. In this case, inadequate description of the density distribution at small
altitudes, if it takes place, can have an effect on accuracy of reentry time
determination for LEO SO. To check this assumption calculations with use of
real data on satellite "Cosmos-398" (71016A) and FSW-1-5 (930963H) were
undertaken. The technique of them consists in the following.

On the base of orbital data, produced by US SSN and RSSS on the last
revolutions before satellite reentry, on an interval -of 7-9 revolutions by the
least squares method orbit elements and ballistic coefficients were updated.
The latter were the initial data for reentry time determination. The
calculations were made with the use of two vesions of atmosphere density
models: CIRA-86 and GOST 25645.115-84

In figure 2 and 3 the diagrams of the satellites "Cosmos-398" and
FSW-1-5 altitude variations at the orbit determination and prediction interval
are presented.

It can be seen, that the both satellites have eccentrical orbits and on the
time intervals chosen for the analysis their altitude are in the range, where in a
sufficient degree errors of atmosphere density models should be apparent. In
table 1 values of prediction intervals and also absolute and relative values of
reentry time determination errors of the satellites are presented.

From given data it follows, that use of model of CIRA-86 instead of
GOST 25645.115-84 has resulted in reduction of reentry time determination
error for satellite "Cosmos-398" by 5 times, and for satellite FSW-1-5 - by
1.8 time. Additional materials, evidently confirming these estimates, are the
results of comparison of predicted and measured coordinates of "Cosmos-
398", obtained on the prediction interval (see fig. 2). In table 2 differences
between predicted and measured coordinates, corresponding to flight altitude
117-118 km are presented.
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Figure 2. Satellite "Cosmos-398" altitude change
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Figure 3. Satellite FSW-1-5 altitude change
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Table 1. Reentry time determination errors

Prediction Errors for Errors for
Satellite interval, min CIRA-86, GOST

min(%) 25645.115-84,
_ _min(%)

Cosmos-398 152 6(3.9%) 31(20.9%)
FSW-1-5 140 14(10%) 26(18.6%)

Table 2. Residuals between predicted and measured coordinates of
satellite "Cosmos-398

Model CIRA-86 GOST 25645.115-84
Measure- Ax, km Ay, km Az, km Ax, km Ay, km Az, km

ment
1 -0.25 -0.056 -0.307 2.511 -18.794 -9.661
2 0.025 -0.200 -0.273 3.258 -18.918 -10.187
3 0.185 -0.149 -0.005 3.891 -18.829 -10.486
4 0.748 -0.345 -0.285 4.936 -18.967 -11.337

It is obvious, that use of atmosphere model CIRA-86 in considered
cases gives essential increase of satellite motion prediction accuracy at small
altitudes. However, in view of limited amounts of actual data final
conclusions apparently should be made later.
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THE FEATURES OF PREDICTION
PROCEDURES, USED IN LOW-PERIGEE
SATELLITES' CATALOG MAINTENANCE

V.F. Boikov
"Vympel" International Corporation, Moscow

Introduction

Prediction procedures [Ref. 1], used for maintenance of Russian satellite
catalog are developed with account of requirements to the Space
Surveillance Center and also have specific features, characterizing the
time of their development. Currently, exchange of catalogs between US
and Russian SSCs is organized and thus the community of Russian catalog
users is extended. These new users are to be aware of these specific features
and conditions.

[Ref.1] comprises formal description of the algorithms but does not
treat the background of realized technical decisions. However, the customer
is often more interested not in the formulae by themselves but in the
understanding of the foundations for the choice of the algorithm.

These issues are the subject of this article. We are to mention our
respect to the works [Refs. 2,3], that essentially influenced this paper.

Development of algorithms for satellites' motion prediction was
undertaken in late 70-ies in research center of "Vympel" Corporation.

The following problems were posed.
1). To IMPROVE CALCULATIONS RATE to greatest extent

possible, retaining the level of accuracy, achieved by algorithm-predecessor.
Procedure, used as standard of accuracy was the algorithm developed by
A. Nazarenko [Ref. 4] that used equatorial orbital elements.

2). To attain the possibility of rather simple enhancement of accuracy
using perturbating factors, previously not taken into account.

3). The algorithm is to be feasible for producing computer codes.
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Most of known techniques, proposed for modelling satellites' motion
were analysed.The major are as follows (the authors of Russian models
are mentioned).

1). Methods of integraing second order equations [Ref. 5].
The methods have certain advantages in calculations of short

periodicals and are widely used in classical celestial mechanics (Laplace,
Newcomb, Hansen and other techniques) Their limitations are accomplished
computation of secular and long periodic perturbations.

2). Methods of consequtive approximations in Poisson form
[Ref. 6].

Advantages - minimum knowledge, needed for understanding. Limitations
-significant computer load (several functions are integrated) and difficulties
in account of perturbations with complex character of secular evolution
(atmospheric drag, for example).

3). Method of intermediate orbits [Ref. 7].
Advantageous for high orbits (an outstanding example - theory of the

Moon by Hill and Brown). For low satellites intermediate orbit gives
enhancement of accuracy for one order in comparison to Keplerian one,
thus employment of special theory of intermediate orbit is not justified.

4). Method of consecutive canonic transforms (Delaunay-
Zeipel)- [Ref. 8].

This method assumes transition from osculating elements to long-
periodic and then from long-periodic to secular elements performed by
similar procedures. Perturbations for all the elements are defined taking
derivatives of one function. Finally, the method provides the shape for
secular equations in complex cases (for example, account of atmospheric
drag).

5). Averaging method in the form of calculating evolution of
equatorial elements [Refs. 4,9].

Advantage is simple understanding of the technique. Limitation is
the existence of two different procedures: calculation of evolution of the
elements for a revolution and calculation of long-periodic evolution of these
elements. Also, calculations of evolution for all equatorial orbital elements
and evolution of the time of passing the equator are performed differently.
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Detailed analysis of the methods resulted in the choice to use in
development of algorithm (new model of satellite motion) the method of
Delaunay-Zeipel in the form of Brouwer.

This solution was rather hard in many senses. The main issue was the
fact that in this period all major satellite surveillance centers of the USSR
used equatorial elements. These were "Russian" elements [Ref. 10].

So, having changed integration technique and thus regecting "Russian"
elements we became "bad guys" in the eyes of our colleagues ( and the
Customer). All the effort was taken to return us to the "right path".

It is interesting to mention that in course of these discussions we knew
nothing of American models SGP, -SGP4, PP2, and our opponents did
not mention them as well.

1 Algorithms' package

1.1 Composition

We developed the package of interrelated prediction algorithms, comprising
the following major procedures:

- analytical prediction algorithm (A),
- analytical prediction algorithm with enhanced accuracy (AP),
- numerical-analytical prediction algorithm (NA),
- numerical-analytical prediction algorithm with enhanced accuracy

(NAP),
- numerical prediction algorithm (N),
- numerical prediction algorithm with enhanced accuracy (NP),
and a set of auxiliary procedures not to be treated here.

1.2 Considered perturbating factors

Uniform set of perturbating factors was accepted for all algorithms.
It was considered important, that all the procedures take account of
the perturbations similarly and with possible completeness. Otherwise,
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analysis of discrepancies in propagating one satellite using different
procedures becomes difficult.

For algorithms of general accuracy perturbations from zonal harmonics
up to sixth order (included) were taken into account, i.e:

C2 0 , C3 0 , C4 0, C5 0 , C6 0 .

Also in these procedures perturbations from sectorial harmonic

C2 2 1 d 2 2

were included.
Algorithms with enhanced accuracy account of zonal harminics up to

the 8-th order i.e.:

C20, C3 0 ) C4 0) C50) C 6 0 , C7 0 , C8 0 .

Tesserals are also imcluded up to 8-th order, but to reduce CPU-
time for analytical and numerical-analytical methods, in the series for
perturbations from tesserals the most significant terms were retained so,
that total error from truncation be of the order of 100 meters for satellites
with orbital eccentricity not exceeding the threshold:

e < 0.05

In these expansions the terms with e2 and higher are also ignored.
Precise numerical algorithm account of all the perturbations and also

has the possibility to extend the order of included perturbations up to 16.
Atmospheric drag is taken into account in different ways for analytical,

numerical and analytical-numerical algorithms.
Analytical algorithm assumes that atmospheric drag is small and can

be taken into account via coefficients:

These coefficients are calculated using simplified formulas in dependence
of night density of the atmosphere in altitude of satellite's perigee, that
depends in its turn on solar radiation intensity F1 0.7 .
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Numerical-analytical and numerical procedures calculate the density
using complete dynamic model of the atmosphere.

Numerical-analytical algorithm calculates evolution of the elements
under atmospheric drag by means of numerical integration of averaged
equations of motion. This subject will be treated further.

1.3 Catalog elements

Input elements for all the procedures are non-singular orbital elements in
the form, accepted for satellite catalog. Thus these elements will be called
(as distinct from "Russian" elements 1) catalog elements (CEL). This set
of elements comprise the following:

t, A = M +w, L = Vi-L--, 0 = cosi, Q, h =esinw, k =ecosw, S,

where:
t - reference epoch,
M - mean anomaly,
w - perigee argument,
a - semi-major axis,
i - inclination,
Q - longitude of ascending node,
e - eccentricity,
S - matching ballistic coefficient.

Together with orbital elements the number of prediction procedure, used
in their updating is present in the catalog. The reason is: though similar
in their form, orbital elements produced using different algorithms differ.

1Widely known and frequently used in Russia so called "Russian" elements (REL) [Ref. 10],
comprising the time of crossing the equator, draconic period, decline of period per revolution
and Keplerian osculating elements for ascending node can be produced from catalog elements
using special transformations' procedures. Certainly, the best acccuracy of orbits' predictions
can be achieved using catalog elements and the same prediction algorithm, that was used for
updating of the elements; otherwise additional matching procedures and transformations are to
be introduced, surely not enhancing prediction accuracy.
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The differences are caused by various averaging techniques, employed
in the algorithms.

In numerical algorithms no averaging is present, thus the elements have
the meaning of osculating.

Analytical procedures are designed with account of double Brouwer
averaging, thus the elements are doubly averaged.

Finally, design of numerical-analytical algorithm also uses Brouwer
technique [Ref.11] to obtain equations, describing evolution of doubly
averaged elements under atmospheric drag. These equations were further
solved using averaging technique.

Thus, for numerical-analytical methods the input data are to be
averaged once, doubly averaged (Brouwer) elements.

1.4 Special modes

Analysis revealed that the greatest part of time is consumed by the
algorithms in course of updating the orbits with the measurements.
With regard to prediction these tasks are rather specific. They require
performong a set of predictions for various moments of measurements
with one and the same initial data. That is why special modes of on-
going calculations are used.

The sense of these modes is that once computed values are stored and
used further in predictions for all the moments. For example, in analytical
procedure coefficients of secular evolution and amplitudes of long-periodic
inequalities are stored.

Also this is the reason to use formulae for fast computation of
trigonometric functions, employing simple approximations, valid for small
intervals of argument's variations.

For critical inclination the algorithms provide special mode, when
corresponding additives of perturbations are transfered from long-periodic
to secular and then are approximately integrated in the shape of
polinomials of time. This technique has less accuracy than the known
method of presenting solution as series in powers of square root of small
parameter, but does not require essential accomplishment of algorithms.
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2 Additional information on the algorithms

Analytical and numerical-analytical algorithms fulfill calculations of
secular and long-periodic perturbations from zonal harmonics with
accuracy O(c2o) using the formulas, taking complete account of inclination
and eccentricity dependences.

Expansion of hamiltonian in non-singular elements h, k is rather
complex [Ref. 12], thus the algorithms use expansion of classical type
in e,w. Singularity in eccentricity is avoided, calculating eA(w) instead
of A(w) and using modified functions of eccentricity.

Functions of inclination and eccentricity are calculated for these
perturbations by means of special "diagonal" recurrent scheme.

Numerical-analytical algorithms use for integration of averaged equations
Runge-Cutt third order technique.

The integration step is chosen using special empirical formulas
depending on altitude and remaining orbital time. This step usually is
1-5 days,i.e. in orbits' updating numerical-analytical prediction performs
one or two integration steps and in practice may be considered analytical.

To avoid fractioning of the step when one of the moments falls into
it,special new interpolation formula is used. This formula is designed in
such a way, that instead of unknown coefficients of Taylor series it involves
known values of right sides for intermediate points of the step, computed
by Runge- Cutt method.

For calculations of the right sides of averaged equations the values of
the order of O(e 3) and O(e 2.p) are considered ignorable.

Derivation of equations for doubly averaged values the differences
between averaged and osculating elements were taken into account only
under exponent sign [Ref. 13].

For calculations of atmospheric density p special approximation of
standard model of atmosphere TOCT 25645.115-84 was used, performing
computing of the density in 150 operations.

For reference this model is presented in Appendix.
Numerical prediction algorithm uses Adams method, where special

empirical rules are used to choose the order and the formula of the method
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for the step.
Numerical method with enhanced accuracy uses Boulirsh technique.

3 The main characteristics of the package

The main characteristics of the package are presented in table 1.
Respectively:
first column - acronym of the algorithm,
second column - simbolically presents taken into account gravitational

field,
third column indicates whether static or dynamic model of atmosphere

is used,
fourth column presents number of operations for on-going calculations

mode (in brackets - the main mode),
fifth column presents CPU-time for Elbrus-2 computer with average

rate of 3500 000 operations per second,
sixth column gives prediction error along the track (in brackets - in

normal direction).
Main theoretical characteristics of developed procedures are summarized

in table 2.
Respectively:
first column - acronym of the algorithm,
second column gives the used catalog elements 2,

third column presents simbolic notation of the main functions of
employed method,

fourth column gives assessment of various errors.

2 traditionally, the sign ' means averaging
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The version of the package for PC (C language) is realized.

Currently preparation of needed user's documentation is being finished.

Table 1. Perturbation fattors, number of operations, accuracy
of different prediction procedures

Procedures Earth Atmosphere Number of operations CPU-time Precision

static 1100 0.0003s 1.5(0.5)km
A 6 x 2 model (2200) 0.0006s e < 0.05

F o.7  __

static 2800 0.0006s 0.2(0.1)km
AP 8 x 8 model (6300) 0.0015s e < 0.05

F10.7

0.2(0.1)km
NAP 8 x 8 dinamic 4200 0.001s e < 0.05,

model (12000) 0.003s 3% atmospheric drag
e < 0.1

N 6 x 2 dinamic I0c 0.16s/d 8km/d
model

NP 14 x 14 dinamic (0.6 + 2.7) x 106 0.1 + 0.45 0.1km
model (Earth 8 + 8) s/d
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Table 2. Methods and catalog element sets,
employed in prediction procedures

Proc Catalog element set Method Precision:
A

7, o(C2 t)
A W = f{10 ,Lot. Offl , hi lki ,I S)WCt) = Wit() + 6wQt)+ 61V,6W -~ o(c2o), o(1-)

_________________________+6W(t) + 6Wges(t) 6Wte
It II I II II II II

AP W = {,Il , 9 , hl , l ,k S) W(t)= " +
+6w() + 6wtea(t)

qw, ~ o(e',e)

NAP W ={fA ,Lo l ,f ' ,h ,k 1,S t A e "r, - 3%

N W = {f, L, ,0l,h ,k ,S base.PkECk+,E 2 Ck+j(k = 6, 10) Ar - km/d
____ ____ ___ ____ ____ ___ reserv.Pk ECk+1)8, t < 4

NP W={A,L,,$(,hkS) U Ar,.,O.lkm/d
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Appendix

Subroutine ATMOSPHERE

Subroutine ATMOSPHERE realizes approximation of the atmosphere
density model [Ref.14].

The input parameters are:
h - satellite altitude over Earth surface,
sin u, cos u - sine and cosine of the argument of latitude (under Pfi = 0),
sin i, cos i - sine and cosine of inclination,
Q - longitude of ascending node,
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t - epoch time,
Pff - the flag of operation mode.

Subroutine uses two operation modes:
PfY = 0 - calculation of density for required point
Pfj = 1 - calculation of "mean" density and parameters of solar bulging.

The flag Pfj = 0 is used for numerical integration of equations of
motion. Access of the NA procedure to the subroutine is done with Pfj = 1

Calculations of density p , "mean" density go and solar bulging

parameters F, cos u*, sin u* are fulfilled using the formulas:

p = p.KoK 1K 2K 3K 4 ,

PO = pnKoK 2K 3K4(1 + 0.5K,(U1 + U2)),

K'(U1 - U 2)

2 + K1 (U1 + U2)'

cos u* =K•K/1, sinu* = r2/,

where
Ko = 1 + (11 + 12h + 13h2)(P135 - Fo)Kf,
K 2 = 1 + (dA + d2h + d3h2)A(D),
K 3 = 1 + (bl + b2h + b3h2)(F -P135)/-P1357
K 4 = 1 + (el + e2h + e3h2 + e4h3)(e5 + e6kp + e7k2)
are multipliers, characterizing changes in atmosphere density due to: Fo
deviation from F 135, half-yeax effect, F deviation from F13 5, dependence of
atmosphere density on geomagnetic perturbation respectively,
F, Fo, F135 - are daily averaged, fixed and the mean for preceeding 135
days values of F10.7,
F 10.7 - index of solar activity, equal to solar radio-emission flux density for
the wavelength 10.7sm,
kP - daily averaged index of geomagnetic perturbations,
D - amount of days from the year beginning,
pn = diP(z) - approximation of atmosphere night density:
z = d 2 Ih -d3 -da 4 ,
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P(z) - polynomial approximatin of eZ:
P(z) = (1 + z(uI + z(U2 + z(u 3 + zu 4 )))) 8,

U = = -0.9998684/8, u2 = 0.4982926/82, u3 = -0.1595332/83, u4 =

0.0293641/84 - constants,
K1 = 1 + K'1 cos' w/2 - factor, accounting for daily effect in density
distribution:
K 1 = Cl + c2 h + c3 h2 + c4 h 3 ,

S - central angle between the current point, where the density is calculated
and the point with the maximum density, regarding its daily distribution:
COS O = K1 COS U + K2 sin u,

K1 = sini sin6 0 - sin(P - ao - pl1) cosi cos 60 ,
K2 = cos(Q - - Wl) cos bo,

ac0, 6D - angular coordinates of the Sun,

VI -,l+ K221
U1 = +
U12 = ( r1

21 ( 1 -[ ))n/2,

Kf, ad, da2 &3, a4, bl, b2, b3,11, I2, 1 3,.Cl, c2, c3, c4, dl, d2, d3, el, e2, e3, e4 , e5, e6 ,
e7, n, ý1p - coefficients of the model, stored in MKA array and used for
calculating atmosphere density under different values of F0.

Unlike the [Ref.13] formula for night density calculations

Pn = aoexp(al - a2 /h - a3),

constants di, i = 1 - 4, used for its polinomial fit, are specified not for
three, as in [Ref.13], but for four layers :
120km < h < 180km, 180km < h < 320km,
320km < h < 600km, 600km < h < 1500km.
Their values are given. The values of other constants are not present here,
one can find them h [Ref.141

F0 = 75
a, = {2488.5533, 40.293687,0.4496995, 0.001213834}
d2 = {0.7009, 0.8016,0.8016, 0.2336}
&3 = {115.3429, 86.3329,86.3329, 491.2201}
a4 = {1.512564, 7.758026, 12.25339, 2.43639}
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Fo = 100
dl = {2488.3927, 43.839081,0.6731885, 0.002518119}
a2 = {0.7000, 0.7675,0.7675, 0.2417}
a3 = {114.638, 77.1052,77.1052, 490.7284}
a4 = {1.620829, 7.785295,11.96155, 2.52656}

Fo = 125
a1 = {2488.4695, 53.128673,1.0484604, 0.005169129}
a2 = {0.6419, 0.7362,0.7362, 0.2654)
a3  f {115.956, 70.5386,70.5386, 479.95371
a4 = {1.290698, 7.702404,11.62780, 2.90787}

Fo = 150
al = {2488.3167, 60.041084,1.4225368, 0.009801573}
a2 = {0.6124, 0.6805,0.6805, 0.2911}
a3 = {116.415, 80.4406,80.4406,461.9691}
a4 = {1.159459, 6.789992,10.53258, 3.420031

Fo = 200
a, = {2487.8713, 67.399254,2.1926321,0.027742197}
a2 = {0.5974, 0.5797,0.5797,0.3492}
a3 = {116.214,100.9417,100.9417,399.0605}
&4 = {1.162338, 5.154387,8.57992,4.95002}

Fo = 250
a, = {2488.1558, 75.038546,3.0883709,0.060895223}
a2 = {0.5772, 0.5095,0.5095,0.4130}
a3 = {116.339, 115.2277,115.2277,284.6955}
a4 = { 1.104324, 4.100519,7.29088,7.35132}
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APPLICATIONS OF PARALLEL PROCESSING TO
ASTRODYNAMICS

S. COFFEY
Naval Research Laboratory

Washington, DO 20375-5355

H. NEAL*
GRO International

July 17, 1996

Abstract. Parallel processing is being used to improve the catalog of earth orbiting satel-
lite; and for problems associated with the catalog. Initial efforts centered around using
SIMD parallel processors to perform debris conjunction analysis and satellite dynamics
studies. More recently, the availability of cheap super computing processors and parallel
processing software such as PVM have enabled the reutilization of existing astrodynamics
software in distributed parallel processing environments. Computations, once taking many
days with traditional mainframes, are now being performed in only a few hours. Efforts
underway for the US Naval Space Command include conjunction prediction, uncorrela-
ted target processing and a new space object catalog based on orbit determination and
prediction with special perturbations methods.

Key words: Parallel Processing, critical inclination, UCT, PVM, SIMD

1. Background

A decade ago parallel processing became available commercially from com-
panies like Thinking Machines, MASPAR, INTEL, IBM and others. Since
then many hardware and software environments have been available. In this
paper we present an overview of problems to which we have applied paral-
lel processing. The applications include the critical inclination problem in
celestial mechanics and operational problems encountered by the US Naval
Space Command (NSC), one of the primary US tracking organizations. The
techniques we employed have varied; we have used SIMD (Single Instruc-
tion Multiple Data) Massively Parallel computers and Distributed Parallel
Systems built on the PVM (Parallel Virtual Machine) environment.

There are several ways that parallel processing can benefit the user;
- provide improved turnaround time,
- enable the use of underutilized hardware,
- allow for the reuse of existing software.

In the applications we have built, many of these benefits have been realized.

* Naval Research Laboratory, Washington, DC 20375-5355
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2. The Critical Inclination Problem

The Naval Research Laboratory (NRL) obtained a parallel processing com-
puter, the Connection Machine 2 (CM-2) in 1987. Our first effort with this
computer was to study the critical inclination problem for the theory of an
artificial satellite. After averaging, the phase space for this problem is a 2
dimensional sphere which can be visualized graphically. We set out to devel-
op a method for using the new parallel processor in our investigations. We
started with a serial program called CCCP (Creative Color Contour Pro-
gram) developed at NIST by Jonathan Aronson working in collaboration
with Dr. Andr6 Deprit. This program, written for a LISP Machine, allowed
one to display contours of a Hamiltonian by assigning colors to the Hamil-
tonian values. This eliminated the need for tedious numerical integrations
producing a more complete picture than previously possible.

The Hamiltonian for the artificial satellite problem was constructed by
averaging the short period terms when the perturbations were restricted to
the zonal harmonics. We give here the Hamiltonian through J4 ,

"H (!2)- ()27 7 32 - 1 )

+ j 2 (g)2((*2)4( ?,(532 _ 2 + 775 ( -54 - 27 S2+3)

4( 4 74+22_39 812 +L

+ 7()~172 132 828 3 16) )

1 4 5 32 _17) 1 075.42 15

The variables in the Hamiltonian are given by

•17= escos g, 2=77esin9, 3 = ( + H IL

In these coordinates,
• + 2 + 2 = 1(1 -H 2/L 2 )2. (1)

The remainder of the variables are e, the eccentricity, H the angular momen-
tum, L the conjugate to the mean anomaly, 77 = v1/-i-, and s = sin(I).

The Hamiltonian has one degree of freedom after averaging, with two
integrals, H and L. Thus, interesting information was to be had by studying
the evolution of the phase space under the control of the integrals.

Using CCCP as a guide, we wrote a new program for the CM-2, although
with significant algorithms to enhance the details of the phase space. Con-
ceptually, the idea is to assign different processors, from a pool of 64K pro-
cessors, to the coordinates of a grid placed on the projection of the phase
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space onto a plane, Figure 1. The parallel processor then computes simulta-
neously the Hamiltonian for all points in the grid. The Hamiltonian values
are sorted and assigned colors which are used to paint the phase space. The
initial idea was to construct a rectangular grid on the projection of the phase
space. Thus, we first select an orientation then apply the coloring algorithms
to paint the resulting projection. The full details behind this technique are
provided in (Healy and Deprit, 1991). This technique provided a lot of infor-
mation quickly that allowed us to gain an appreciation of the changing phase
space. From these observations we drew conclusions that helped direct sub-
sequent analytic investigations. The results of the research can be found in
(Coffey, et al., 1994).

II IIII I I I H(41rL~,4243) 0 5-1 H-1

Phase Space Projection Range of H Colors Colored Phase Space

Figure 1. Coloring a Phase Space

Since the phase space is a sphere, it is important to see the image from
different orientations.. However, the CM-2 is not a good graphics engine.
Using an icosahedral (nearly uniform) grid for the sphere (Baumgardner
and Frederickson, 1985) we can compute the Hamiltonian on the sphere
rather than on the projection of the sphere. This enables us to bring back
the true 3 dimensional phase space for display on our Silicon Graphics work-
stations. This provides better visualization of the three dimensional images.
We frequently use 40962 vertices for the true 3-d images.

A SIMD computer, like the CM-2, was a good choice for this problem.
Here we were building a new computer program and were free to select the
hardware best suited to the problem. For many subsequent problems we did
not have this luxury in that we often have to reuse existing software, which
carries with it the need to conform to certain hardware. SIMD stands for
Single Instruction Multiple Data, which means that at each execution cycle
every processor executes the same instruction. For the phase space problem
we needed, at each grid point, to evaluate the Hamiltonian. The algebra
is the same regardless of the coordinate. Only the coordinates which are
the data are different. This program could therefore be written with huge
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internal arrays to hold the Hamiltonian values. Each array element would
be automatically mapped to a processor by the Connection Machine system.
This computer system provides special hardware for efficiently broadcasting
instructions to the processors and returning values to the control processor
which is the front end computer.

3. Satellite Collision Prediction

Another problem that we applied our CM-2 computer to was COMBO,
the Calculation of Miss Distance Between Objects in space. We wanted to
determine when objects in space come close to each other. The Air Force
and Naval Space Commands, which are part of US Space Command, have
had for a number of years programs for computing the distances between a
single object and the set of known objects in the space object catalog. We
call this the one-to-all collision problem. We wanted to generalize this to
determine when any two objects come close together, an all-to-all compari-
son of positions. This is useful for determining the probability of collisions in
space which might lead to chain reactions of fragmentations of space objects.

Although we had access to the Naval Space Command's (NSC) COMBO
software, we elected to build from scratch, a program we call CM-COMBO.
The hardware of choice was again the Connection Machine. At first we used
the CM-2. Later we converted to the Connection Machine SE (CM-5). This
computer runs similar to the CM-2, but is quite different in hardware. Its
processors are 64 bit versions of the Vector Sparc Chip. There are fewer of
them, 256 processors " in our computer, with 16K possible. The technique
on this computer is to allow each processor to act like a large set of vir-
tual processors. That is, each processor cycles through arrays much like a
serial computer does with a do-loop. This is transparent to the user, the
programming being almost identical to that on the CM-2.

The concept behind CM-COMBO was to assign individual processors to
the objects in space. Each processor starts with the initial conditions, called
an element set, for its object. It applies a propagator to the elements to
compute the new position. All objects are propagated to the same new time.
We generally use the propagator PPT2, which is what NSC uses to construct
the elements for the Navy's catalog. PPT2 is based on the analytic theory
of Brouwer (1959). Since the propagator is analytic the same instruction set
is used to compute the position of every object. Thus, once again we see the
benefit of the SIMD computer. A fairly complex method for determining
close approaches was developed, the details are available in (Healy, 1995).
Although COMBO prints a report on the conjunctions, the most flashy
output is a picture like that in Figure 2. This particular figure shows the
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.:'zgiure 2. Conjunctions of Debris for catalog of 3 June, 1996. Catalog size of 8919 objects
onjunction distance of 5 km.

instantaneous locations of all the objects in the catalog for December, 1995.
The ± marks, indicate two or more objects less than 5 km apart.

NSC runs COMBO remotely from an account on the CM-5. The ele-
ment sets are automatically deposited in the account. NSC has used the
p)rogram to confirm conjunctions with the shuttle which they obtain with
heir own software. They also run the program to obtain reports of coming

conjunctions that might be photographed by ground based telescopes. One
such event of TIROS 10 and NOAA 10 was photographed on May 21, 1993.
COMBO computed a miss distance of 2.1 kin. While the use of this program
is not essential to their operations, it is believed to be the first significant
.,se of external computing resources by NSC.

A SIMD computer is a natural choice for this problem because of use,
oi the use of an analytic propagator. However, if for increased accuracy, a
numerical integrator were substituted then the efficiency of the SIMD com-
puter would suffer because the huge variation in the orbits represented in tIn
atalog would require substantially different step sizes for the integiatmion.a
l'hus the computer would run at the speed of the slowest integration

SIMD computers are dropping in popularity and likely will be less of a
ýKctor for parallel processing in the future. As a result Dr. Healy recently

ported most of COMBO to the PVM (Geist, A., et al., 1994) environment.
PVM allows a group of heterogeneous computers to operate as a parallel
,omputer. Unlike the SIMD method of broadcasting instructions. informa-
7 ion in a PVM environment is passed by a message passing system. PVNI
,)roved an adequate system for this version of COMBO.
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4. Uncorrelated Target Processing

US Space Command, in tracking space objects, frequently obtains observa-
tions that cannot readily be correlated to a known object. Often this results
from an observation from an unknown object or from an object previously
cataloged but later lost. Most often these observations come from fragments
produced by explosions of rocket bodies and satellites. These observations,
called uncorrelated targets (UCTs), present a serious problem for US Space
Command. The Naval Space Command radar fence that stretches across the
southwest United States is the largest detector of UCTs. This passive radar
obtains returns for almost any object with an inclination above 30 degrees.

NSC developed a program called SAD (Search and Determine) to corre-
late UCTs which are kept for 60 days. The essence of the algorithm, when
it is used for UCT processing, is to form every possible pair of observa-
tions from the UCT file and then determine what orbits could contain these
two observations. For UCT processing the observation set is usually made
up of earth-centered X-Y-Z observations. These observations are created
by triangulating direction cosines from the NSC fence to create one X-Y-Z
observation per orbital pass.

SAD is also used for processing fragmentation events. Here, the blast
point of the fragmentation is used as the first observation in every pair.
In this case the number of pairs processed decreases dramatically with a
corresponding decrease in computer time.

NSC has never been able, with their 1970 vintage Cyber computers to
process more than 5 days of observations, mainly because the computer time
would take several days. Moreover, recent events at NSC eliminated any
possibility of running the program. We undertook to rewrite this program
for parallel processing' (Coffey et al, 1996) with three objectives:

- reestablish the use of the SAD for UCTs,
- provide rapid turnaround performance,
- enable the processing of the full 60 day sets of observations.
This is an instance where we reused most of the existing program. We

rewrote the program to run on top of PVM. PVM links distributed proces-
sors together in a parallel processing environment. Each processor completes
an assigned task, receiving data and returning results to one or more com-
puters. There are a number of nested loops in the original SAD program,
starting with a loop through the pairs of objects called starter pairs, a loop
over the direction of the orbits constructed and a loop on the possible solu-
tions to Lambert's problem. Inside the starter pair loop there is a refinement
step to include associated observations. We parallelized on the outermost
starter pair loop. A master/slave design was implemented. The master pro-
gram selects pairs of objects to construct orbits from. These pairs are sent
to the slave processors along with the complete observation set. This code
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was unchanged from the serial program. The master starts up the slave pro-
grams, one for each node in our "virtual machine." The virtual machine is
the collection of processors on which the program executes. The master can
auto-detect the number of nodes available eliminating the need to specify
how many nodes to use. Because the master program does so little, a slave
program is also set up on it.

The code internal to the starter pair loop was formed as a standalone pro-
gram for the slave processors. The slave processors return the orbits found,
providing a distinction for orbits presenting a high confidence of being a
real object. These orbits are called superior orbits. The greatest dilemma in
designing the parallel version of SAD was how to handle superior orbits. In
the serial version of SAD, the discovery of a superior orbit affects the pro-
cessing of all su&ceeding starter points because the the observations linked
to the superior orbit are removed from the observation set. In the parallel
program, several starter points are processed concurrently, so when a supe-
rior orbit corresponding to a particular starter point is found in one slave
program some of the observations supporting that superior orbit may have
been already processed as starter points by other processors. In order to
mimic the serial version of SAD, all starter points after the one for which
a superior orbit was found would have to be reprocessed with the adjust-
ed observations set. This would require greater complexity in the code to
take care of the necessary bookkeeping, and the re-processing could severely
diminish the efficiency of the parallel code, especially when a large number
of nodes are present in our virtual machine.

We have some leeway in handling superior orbits. However, we still wish to
remove the observations associated with superior orbits from the observation
set. Leaving them in can result in extra orbits in the output. Our solution
is to update the obsetvation set on the master and all the slaves as soon as
possible after it changes. The slave program in which the superior orbit is
found returns the orbit and its associated observations which are removed
immediately from the observation set. The updated observation set is then
broadcast to all the slave nodes. The slave nodes will not receive this set,
however, until they finish processing the starter point on which they are
working. So, the change on all the slaves except the one with the superior
orbit will be effective with the next starter point they process. The starter
points that are being processed or have already been processed are not re-
evaluated with the updated observation set.

One implication of updating the observation set in this manner is that
if Parallel SAD is run multiple times with the same observation set, the
number of orbits and their solutions will vary from run to run. This occurs
because the starter points that have been processed when the observation set
is updated will be different on each run, due to differences in the operating
conditions on the nodes in the virtual machine. This behavior makes it
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very difficult to test and debug the software, but it is acceptable from the
analyst's point of view: any version of the output set will meet his needs.
The program usually produces more orbits than the analyst can use. But,
it generally does not miss real orbits.

Parallel SAD was installed at the US Air Forces's IBM SP2 parallel com-
puter located at Kihei, Maui, Hawaii, where it became operational in May,
1995. Since then it has been used on average every two weeks by the oper-
ations group at NSC. Programs are submitted to the SP2 through batch
queues, the largest allowing for 128 processors. The turnaround for a batched
job can be as much as 24 hours. However, that is substantially less than it
would take on a single workstation. The normal run time for 60 days of
data is two to four hours on 128 processors. The programming time was
approximately 3 man 'months. This is the second time that NSC has made
significant use of external resources for operational activities.

Recently we installed the program at NSC on 14 little used workstations
from their Finance Department. The installation took a day for PVM and
Parallel SAD and 3 days to check out the program. However, interestingly,
previous to installation it took 30 days to obtain approval to install the
system. The normal execution takes about 16 hours on these computers.

On 3 June 1996 object 23106, a Pegasus rocket body launched in 1994,
exploded in space. This has resulted in 539 fragments being cataloged, most
of which will stay in orbit for hundreds of years. Parallel SAD played a
significant role in cataloging these objects. As can been seen in Figure 3 the
catalog now contains over 9200 objects. We can attribute significant credit
for the growth in the catalog to the use of Parallel SAD.

We draw several conclusions about parallel processors from Parallel SAD,
- Many existing programs can be parallelized at little cost,
- Dedicated computers are not necessary for parallel processing,
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- Proprietary concerns may exclude the use of existing resources for par-
allel processing,

- Distributed Parallel Processing is mature enough for operational use,
- Networking provides external computer resources for operational use,
- Parallel processing provides a means to run jobs that would be pro-

hibitively long on a single serial machine.

5. Catalog Maintenance with Special Perturbations

Since the beginning of the Space Age, US Space Command has used analyt-
ic propagators to maintain their catalog. Recently we undertook a task to
develop a catalog using special perturbations, that is with a numerical inte-
grator. The reason is that numerical integrators can provide more accuracy
through the use of better force models. Whether the radar data is sufficient
to support the better accuracy needs to be determined.

Since this will require substantial computer time, we again are using
parallel processing. Again we seek to adapt an existing program to run on
top of PVM. The integrator itself is a variation of a Gauss-Jackson 8th order
integrator already in use by US Space Command.

The concept here is fairly straight forward. The parallel system is written
as a Master/Slave arrangement. The master computer organizes the I/O,
starts up the slave nodes and sends them the initial state vector, and the
correlated observations. The slave then integrates, differentially corrects the
orbit state and sends it back to the master for cataloging.

This task illustrates the most primitive form of parallel processing. There
is no communication between the slave processors, only between the master
and the slaves, and then only for data transfer. The slaves are free to update
their state vector in their own time. Once they complete one satellite, they
return their state vector and receive a new one along with the observations.
Synchronization is quite simple since the master controls everything.

6. Conclusions

One method of parallel processing we have not found useful is what is
referred to as control decomposition where dissimilar parts of a program
are sent to different processors for execution. In this form of parallelization
great care must be exercised to maintain a high level of synchronization
and utilization of the slave processors. We have have not found this type of
parallelization useful for our applications.

This should not be confused with the method used on SAD where a core
module was extracted and duplicated for the slave computers. The slaves
performed a large task to completion on each data set from the master.
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For each of our applications, the data for the slave nodes has an identical
structure and the programs on the slave nodes is always the same. In our
SIMD application the synchronization was at the instruction level with each
processor receiving a copy of an instruction to execute on the data. In the
PVM applications the synchronization was more coarse, being at the pro-
gram level. Here each processor received a complete yet identical program to
execute on data possessing an identical structure. Thus, there is a great deal
of similarity in our applications whether SIMD or distributed parallel pro-
cessing under PVM. For the PVM applications the flexibility of processors
completing tasks at different times produces better efficiency for problems
that cannot be precisely synchronized.

The environment PVM is available for most computers. As we have indi-
cated, we have made extensive use of it and have found it to be very robust.
PVM has spawned a standardized language called MPI which is now avail-
able.
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INTRODUCTION

For about thirty years, the catalog of Earth satellites
has been maintained using analytic orbit models based mostly
on Brouwer's 1959 artificial satellite theory. Satellite
cataloging is one of the few space-related operations in
which accurate special-perturbation (SP) orbit models have
not yet replaced less accurate general-perturbation (GP)
models. Until recently, the main reason was computing time:
analytic models accurate to several kilometers execute one
or two orders of magnitude faster than purely numerical
models of similar accuracy. Moreover, the number of arith-
metic operations for a GP prediction is nearly constant with
respect to time from epoch, while the number of operations
for an SP prediction is almost proportional to time from
epoch. In the past, if SP models had been used exclusively,
the available computers could not have kept up with the
incoming observations on the entire catalog (currently about
8200 objects) while doing all the required data association,
orbit determination and related analysis. Now the basic
computing capacity does exist to maintain the catalog with

U.S. kavatSpace Command, 5280 Fourth Street, Dahigren, Virginia 22448.

General Research Corp., 985 Space Center Drive, CoLorado Springs, Cotorado 80915.

66



SP; however, for practical reasons, the catalog still con-
sists of mean element sets derived with GP orbit models.

This paper describes the analytic orbit model, known as
PPT2, that Naval Space Command (NAVSPACECOM) uses for space
surveillance and related applications. (Ref.1) documents the
software along with the basic theoretical background. The
PPT2 model contains several modifications of Brouwer's
original formulation, which are needed for Naval space
surveillance operations but which may not be widely under-
stood among users of cataloged elements. This paper also
describes briefly how the model is used in orbit determin-
ation for catalog maintenance. Other components of U.S.
Space Command use a different analytic model, known as SGP4,
for space surveillance operations. We describe this model in
comparison to PPT2 and outline the problem of converting
element sets between these two models. Currently, the third-
body and resonance models in SGP4 are being incorporated
into PPT2 in order to create a new analytic model known as
PPT3. (Ref.2) documents this effort to date, and (Ref.3)
records some test results for both PPT2 and PPT3. The new
model is being developed not only for improved accuracy for
high-period orbits but also for improved compatibility
between NAVSPACECOM and other components of U.S. Space
Command.

PPT2 (Position and Partials as functions of Time 2)

PPT2 implements the complete 1959 Brouwer satellite
theory', together with certain modifications needed for
operational orbit determination. The model was first created
in 1964 by R.H. Smith of the Naval Space Surveillance System
and is in use today in nearly its original form. The model
does not include any third-body or resonance effects, mainly
because the primary Naval concern at the time was to track
near-Earth satellites. As discussed later, this modeling
issue is now being revisited.

PPT2 includes all first-order zonal terms through

O(J 5) , as derived by Brouwer 4 . Brouwer required no auxili-

ary expansions in eccentricity for the zonal satellite
problem, so the theory holds for any eccentricity less than
unity. PPT2 retains all long-periodic terms, including the
ones with a zero divisor at the critical inclination. How-
ever, PPT2 handles these critical terms in a special way, as
described below. All first-order zonal secular terms through

0(J5 ) , and some second-order O(J2) zonal secular terms,
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derived by Brouwer, are retained. A special feature of PPT2

is that the "mean" mean motion nO (hereafter called simply

the mean motion) is defined differently from Brouwer's
quantity of the same name. Brouwer defined mean motion in
terms of mean semimajor axis by essentially the Keplerian
formula. However, for PPT2 it was decided for computational
reasons to define the mean motion as the entire coefficient
of time in the linear term in perturbed mean anomaly. That
is, the PPT2 mean motion includes the zonal secular pertur-
bation rate of mean anomaly that Brouwer derived. As a
result, the expression for PPT2 mean motion explicitly
contains perturbation parameters and functions of the other
mean elements, similarly to the definition adopted by Kozai 5

in a theory contemporary with Brouwer's. In fact, the numer-
ical value of the PPT2 mean motion usually turns out to be
closer to Kozai's value than to Brouwer's.

Three other important modifications of Brouwer's for-
mulation have been incorporated into PPT2 in order to sup-
port operational orbit determination. These are (i) nonsin-
gular variables to accomodate nearly circular or nearly
equatorial orbits, (ii) a systematic way to accomodate
orbits at or near the critical inclination, and (iii) a
method of representing orbital decay due to drag. Each of
these items will be discussed in turn.

The Lyddane Modification in PPT2

Because Brouwer's 1959 theory is developed in terms of
Delaunay and classical elements, spurious singularities
appear at zero eccentricity and zero inclination. In PPT2,
these singularities are eliminated, without reformulating
the entire theory, by introducing a set of auxiliary vari-
ables (essentially Poincare variables) suggested by Lyd-
dane6. In short, Lyddane proposed to regroup Brouwer's terms
to avoid the unwanted divisions. It must be admitted that
the procedure does raise some conceptual difficulties,
namely, inconsistencies in the definition of mean anomaly
and argument of perigee at second order. Lyddane delib-
erately used "double-primed" values of these two elements in
some places where Brouwer indicated "single-primed" values.
The implications of this shortcut have been discussed not
only by Lyddane but also by Lane and Cranford7 . In practice,
no real difficulties appear. Brouwer's theory is essentially
a first-order theory, and minor inconsistencies at second
order should be no cause for alarm. In fact, we have found
that Lyddane's procedure, which also is a first-order ap-
proximation, produces entirely acceptable numerical results.
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It is worthwhile to summarize Lyddane's method in the
notation of this paper. Let

M = mean anomaly
e = eccentricity
I = inclination

argument of perigee
right ascension of the ascending node.

Then, using double primes to indicate mean elements and the

6 operator to indicate perturbations of the elements, we

consider the following combinations of classical elements:

"ecosM= (el + 8e) cos (MO + 814

"esinM= (el+8e) sin(MW+ h1)

sin/ cosh = sin (I+6I) cos (h" + 8h)
22 ()

sin- sinh = sin (I"+ 6I) sin (h+ 8h)2 2

M+g+h = (M"+g"+hll) + 6(M+g+h) = z"1+8z

Using angle-sum identities and keeping only first-order
quantities, we have

"ecosM = (ell+ 8e). cosM" - (e//8M) sinMM" (2)

"esinM = (el+6e) sinM" + (e6/M) cosM11  (3)

sin-s cosh = in.l 2] -o oh i.L h ih1 (4)

s 5m=[5 in1+r co.r sinh"I+ (sin-f•6h1cosh/1(5)

2 S _ýX)2 ~2 22

z = (M11+g"+h"1) + (6z) (6)

For convenience, we also use the identity
sin "/ 6h (sinXI/6h)

2 22cos(IX1/2)

The groupings of quantities in parentheses above are numeri-
cally well-behaved for all values of eccentricity and incli-
nation on elliptic orbits, including near-zero values. In
several places, algebraic reductions of Brouwer's formulae
are necessary. However, given the mean elements, we can
evaluate the right-hand sides above with no loss of preci-
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sion. Then we invert the equations to get the osculating

classical elements:
e = /(ecosM) 2 + (esinM) 2  (8)

M= tan-' e s--) (9)

cosl= 1- 2 sin2! = 1- 2[(sin! cosh)2 + (sin Xsinh)2] (10)

h = tan' (sin(I/2) sinh (11)

(sin (X/2) cosh)

g= z-M- h (12)

Poorly defined individual values of M , g or h always
appear when eccentricity or inclination are small. However,
as Lyddane discussed, errors of this type formally cancel in
the calculation of position and velocity. PPT2 uses Lyd-
dane's method for all orbits.

critical Inclination in PPT2

Brouwer 4 showed that the perturbation theory should
remain valid for all inclinations except for an interval of
about 1.5 degrees on either side of the critical inclin-
ation. Within this narrow range, special procedures are
required in any implementation of a Brouwer-type theory. In
PPT2, the procedure is as follows. First, we compute the
critical factor

x = I - 5cos2x11 (13)

This factor vanishes at about IX - 63.*430 . Then all occur-

rences of 1/x are replaced by the approximation

1 S 1 - exp(-100x 2) C(x) (14)
x x

Away from the critical inclination, C(x) tends rapidly to

1/x . But in the neighborhood of the critical inclination,

C(x) is bounded, and in fact vanishes at x = 0 . It can

be shown that C(x) has a maximum amplitude of about 6.382.
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There are two extrema having this amplitude, a minimum near

I" = 61.860 and a maximum near I"*= 65.080 .

We do not compute the value of C(x) directly from the
above expression because of numerical ill-conditioning. Even
the direct power-series expansion of the exponential func-
tion exhibits poor convergence because of the factor of 100.
Both problems are avoided by repeatedly factoring the numer-
ator of C(x) , expanding one factor in series and formally

cancelling x from the denominator. In particular, we
repeatedly factor the difference of squares to obtain the
exact expression

2.0

C(x) -- (I - exp(-x 2)) 11 (1 + exp(-2 mjx 2 )) (15)
X m-O

where 10 = 00/211 . Then the first factor is computed by a
series expansion truncated to a practical number of terms,

which is feasible because of the smallness of 13
12 p ~

(1 -exp(-Px 2)) = Ex• (-I), 2 n (16)
X (n+1) (

No physical or analytical basis exists for handling the
critical-inclination divisor in this manner. We have here
merely a convenient numerical spline across the singularity.
It is designed to limit the magnitude of the critical terms
smoothly, producing a "soft" truncation that avoids omitting
the terms entirely. The spline works well in practice mainly
because the dynamical phenomena associated with the critical
inclination happen on a time-scale that is longer than the
interval over which the rest of the theory can be used in
real orbit determination problems. Moreover, the number of
product terms, the number of series terms and the value of
the factor 100 are not highly refined values. They were
obtained essentially by trial and error, the aim being to
produce an acceptable combination of function amplitude and
numerical smoothness near the critical inclination without
excessive arithmetic. The approach has not received any
critique in the open literature, though it has been men-
tioned in passing in (Ref.8). Recently, Coffey9 and co-
workers had occasion to examine how well the approximation
works far from the critical inclination. They have found
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that the numerical results can be sensitive to the number of
series terms in spite of the smallness of 3 , that the
choice of only 12 series terms can lead to noticeable errors
far from the critical inclination, and that the working

formula for C(x) needs to be tuned for the particular

orbit model in which it is used.

Aesthetically, a better procedure than merely zeroing
the critical terms would be to use a rigorous theory of the
critical inclination. There is also some operational incen-
tive to improve the handling of critical inclination because
a large fraction of the catalog is in that regime. The
problem of representing the motion analytically near the
critical inclination has attracted considerable attention,
though no operational models have been produced. The early
theoretical contributions by Horin0 and Garfinkel1 " are only
two of the many that could be cited. Recently Miller12 made
a fresh approach to the problem. Like its predecessors,
Miller's theory is valid only in the neighborhood of the
critical inclination, while a Brouwer-type theory is valid
everywhere except at the critical inclination. It turns out
that this feature is inherent in the problem. Recent inves-
tigations of the geometry of solutions in the phase space
for the zonal-perturbed satellite problem13,14 have shown that
the critical inclination is an essential singularity, so
that one cannot construct a single perturbation solution
that is valid for all inclinations. But this fact does not
preclude developing an operationally useful model. The
situation is reminiscent of the classical singular pertur-
bation problem. There one tries to develop a composite
perturbation solution by matching "inner" and "outer" asymp-
totic expansions in some overlap region near the singularity
of the "outer" solution'5 . In the main problem of satellite

theory the Brouwer solution is developed in powers of J 2

while the critical-inclination solution is developed in

powers of / , so a matching principle would be needed

that can accomodate this difference. On the other hand, a
simpler procedure would be to try to match the two solutions
in an ad hoc way, perhaps using a spline approximation of
the type we have just discussed. The result would be a
homotopy mapping between the two theories, given as a func-
tion of the inclination. NAVSPACECOM has not yet tried
either the, singular-perturbation or the ad hg qapproach for
matching a critical-inclination theory with the Brouwer
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theory. Even though the idea seems natural, we are not aware

of any implementation of it.

Orbital Decay Modeling in PPT2

PPT2 models the along-track effect of atmospheric drag
by assuming that the perturbed mean anomaly is given by at
most a cubic polynomial function of time:

M M/+ n 0 (t- to) + -- (t- to)2 + A-i- (t- to) 3  (17)

where to is the epoch and ze is the mean anomaly at

epoch. The coefficients of the quadratic and cubic terms are
determined empirically for each satellite by adjusting them
along with the values of the mean elements in a differential
correction against observations. In practice, it turns out
that the cubic coefficient is almost always small and poorly
determined. Orbital analysts sometimes use it for special
purposes, but for all cataloged orbits the cubic coefficient
is set to zero arPigri. Hence, the mean anomaly is repres-
ented finally by a quadratic function of time. Of course,

the empirical value of h11/2 represents the combination of

all unmodeled secular along-track effects, not just atmos-
pheric drag alone. But for most near-Earth orbits, drag is
by far the dominant along-track effect. Then the main ef-
fects of orbital decay are represented by very simple for-
mulae. The secular rate of change of mean semimajor axis is

computed in terms of*' hi/2 by assuming that Kepler's Third
Law holds for the mean elements:

d (n 12 a 113) = o 4 - ao1 2~" (18)

where the zero subscript'denotes an epochal value. The
secular rate of change of mean eccentricity is computed in

terms of • as

//= (1 - // 2) 0 (19)
ao

Then the mean eccentricity and mean semimajor axis at the
time of interest are computed as
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e NI +
(20)

a1 " ag+ &n1 (t- )

Only these two mean elements, plus mean anomaly, receive
explicit drag corrections when PPT2 is used in its usual
prediction mode. Far enough from epoch, this decay modeling
produces invalid eccentricity values that can cause trouble
in other formulae and applications. There are many possible
remedies, but the simplest ad hoc logic is used in practice.
If the updated mean eccentricity is negative then the PPT2
model resets it to zero and if it is greater than 0.99999
then the model resets it to 0.99999. Similarly, if the
updated mean semimajor axis is less than one Earth radius
then PPT2 resets it to one Earth radius.

The formula (19) for the drag-induced secular rate in
eccentricity requires some comment since it is not docu-
mented in the open literature. From the work of King-Hele' 6

and others, it is well known that the osculating semimajor
axis and eccentricity obey the differential equations

da B pa2 1 + ecosE (1 + ecosE) (21)

de• I e cosE

de = -Bpa(-e 2 ) I I cosE (22)
1 - e cosE

In these equations, E is the eccentric anomaly, p is

the local atmospheric density, and B is the satellite
ballistic coefficient. These are just Lagrange's planetary
equations for the two elements in question, when the only
perturbation is a drag force proportional to the square of
the orbital speed and directed opposite to the velocity
vector. Rotation of the atmosphere is therefore neglected.
Assuming a static, spherically symmetric atmosphere with an
exponential variation of density with height, the density at

geocentric radius r is given by

p(r) p p 0 exp -((r-ro) /H] (23)

where p0 is the reference density at radius r 0 and H

is the scale height. With this simple model for the density,

and assuming constant B and p0 , one can derive the
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first-order changes in semimajor axis and eccentricity over
one revolution. Then the ratio of these changes turns out to
be independent of ballistic coefficient and reference den-
sity. In particular,

Ae = e (i- e 2) F(a, e,IH) (24)
Aa" a

The function F(a,e,H) is complicated, and the series
expansions required in the averaging converge slowly at
best. For example, to lowest order in eccentricity we obtain

F(a,e,H) = a+ 1) (25)

which has an uncomfortably large value in any system of
units. At this juncture in the development of the PPT2 drag

model, the provisional agreement was to set F a 1 , which

explains the secular formula (19).

When PPT2 is used operationally for catalog mainten-

ance, a value of Aiz/2 is estimated for every orbit, not
merely for decaying orbits, and the secular variations of
eccentricity and semimajor axis (20) are always applied.
consequently, high-altitude orbits occasionally exhibit
"negative decay" according to a least-squares update of the
elements. This phenomenon is merely the aliasing of un-
modeled effects (maneuvers, lunar/solar attraction, reso-
nance, and solar radiation pressure) by the inadequate
model. It causes no computational difficulties and usually
produces acceptable.short-time predictions as needed for
most catalog maintenance. Of course, the secular eccen-

tricity rate (19) is highly dubious if the value of h11/2
is not caused by drag. A good case can be made for omitting

the secular variation of efl due to drag when A///2 is

negative. But it has been clear for many years that better
modeling is needed for high-period orbits, especially if
longer-time predictions are to be made. This modeling issue
is now being addressed, as discussed later.

The intention in the mid-1960s had been to try to
develop a better decay model whenthe resources became
available. In the meantime, it was found that this very
simple decay modeling met all Naval space surveillance
requirements after all, a rather surprising result in view
of the severe approximations involved. Consequently, al-
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though improved drag modeling has always been desirable, it
has not been considered cost-effective to try to improve the
general-perturbation (GP) treatment of drag for space sur-
veillance operations. The more practical approach has been
to change from the GP orbit model to a special-perturbation
model when the analytic method becomes inadequate. We find
that, under normal conditions, about 1.5% of the catalog
requires continual attention from the operations analysts,
mainly because of inaccurate GP decay modeling. Although a
disproportionate share of the analysts' time is spent on
these few orbits, the extra human effort involved rarely
causes operational shortfalls.

USE OF PPT2 IN ORBIT DETERMINATION

For any particular PPT2 element set, the absolute
prediction error at any time is not known quantitatively,
especially when the error is conditioned on uncertain obser-
vations. As a result, there is no rigorous way to select
either a data span for orbit determination or a deweighting
factor for observations taken far from epoch. However, a set
of nominal fit spans for orbit determination with PPT2 has
been adopted to provide default values for the automatic
catalog maintenance system. These time spans are purely
empirical, the result of long experience with the catalog
maintenance process using the PPT2 orbit model. They do not
guarantee that optimum prediction accuracy will be achieved
with any data set. They do represent informed opinion about
how far from epoch a useful prediction accuracy can be
maintained with PPT2 in a least-squares fit of data from the
current space surveillance system. In this case, "useful
accuracy" means that about 94% of all the data can be as-
sociated automatically with the correct satellite. (This
percentage is not a design value, but merely reflects the
current system performance.) A discussion of the association
tolerances for catalog maintenance is beyond the scope of
this paper, but they are typically on the order of 10 to
several tens of kilometers in vector components of position.
The operations analysts, who must deal manually with any
unassociated or incorrectly associated data, are free to
redefine the fit span for any particular satellite as needed
for best maintenance of the orbit with the actual data
available. However, they usually make only minor, if any,
adjustments.

For satellites whose mean period is greater than or
equal to 600 minutes, the nominal fit span depends on only
the period:
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PERIOD (minutes) SPAN (days)

> 800 30
600 to 800 15

For satellites whose mean period is less than 600 minutes,
the nominal fit span depends only on the rate of change of

mean period as computed from hil/2 :

S2I..(26)
- no 2o /

This dimensionless period rate is multiplied by 1440 minutes
per day to obtain more practical working units. In partic-
ular:

PERIOD RATE (min/day) SPAN (days)

> -0.0005 10
-0.001 to -0.0005 7
-0.01 to -0.001 5
< -0.01 3

In the NAVSPACECOM system, the fit spans, whether
nominal or analyst-adjusted, are not always used explicitly
in the least-squares update of the elements. In other words,
PPT2 does not always have to predict the entire length of
the fit span. To reduce the average processing time for each
orbit, the system first attempts a sequential-batch least-
squares update. This involves taking the most recent element
set as an DriprVi estimate, establishing a new orbital
epoch at the time of the most recent observation and incor-
porating only the data that have arrived since the last
update. In principle, the a priori estimate contains all the
information present in the previous observations, and hence
PPT2 needs to predict only as far in time as the last up-
date. In practice, the sequential process does not work
indefinitely because of information being lost through model
errors. As determined by various quality and consistency
checks within the system, a more expensive, full-batch
update of the elements may be required at irregular inter-
vals in order to re-initialize the sequential process. But
it is only in a full-batch update that the fit span expli-
citly conditions the new estimate of the elements, since
only then must PPT2 predict the entire length of the fit
span. It is also worth noting that each orbit is updated at
least once per day, provided that new data are available, so
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that PPT2 rarely needs to predict more than 36 hours from

epoch if the sequential-batch update is successful.

SGP4 (Simplified General Perturbations 4)

The U.S. Air Force, under the aegis of U.S. Space
Command, operates the primary space surveillance center at
Cheyenne Mountain Air Station (CMAS), as well as most of the
sensors in the space surveillance network. The analytic
orbit model used at CMAS and at some sensors is known as
SGP4, and it differs from PPT2 in several important ways.
Since both SGP4 and PPT2 are used to maintain the entire
space catalog, a brief comparison is in order. The main
items to be mentioned are (i) differences in the Brouwer
part of the model, (ii) differences in orbital decay model-
ing, and (iii) lunar/solar and resonance modeling in SGP4.

SGP4 is based on modifications, by Lane 17 and Lane and
Cranford7, of the theory developed by Brouwer and Hori 8 . The
motivation for all these developments was to extend the
original 1959 Brouwer theory to include atmospheric drag
perturbations. Thus the theory of Lane and Cranford is a
coupled zonal-drag perturbation solution of satellite mo-
tion. The realization of this theory as the present SGP4
model involved both truncations and additions in the under-
lying theory in order to meet Air Force operational require-
ments for space surveillance in the late 1970s.

The Brouwer Part of SGP4

In SGP4, all O(eJ2) and smaller short-periodic zonal

terms have been omitted. All long-periodic zonal terms which
contain a zero divisor at the critical inclination are

omitted. All first-order secular zonal terms through O(J 4 )

have been retained, as well as some second-order O(J•)

terms, but all terms of any type containing J5 have been

omitted. These truncations in the model were accepted mainly
to reduce the computational load on the original host com-
puters. In effect, about 90% of the terms in the original
Brouwer theory have been omitted, and no special procedures
are necessary near the critical inclination. As with PPT2,
singularities at zero inclination and zero eccentricity are
avoided by using the auxiliary variables proposed by Lyd-
dane6.
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orbital Decay Modeling in SGP4

The theory of Lane and Cranford7 assumes that atmos-
pheric density is described by a power-law height profile
and neglects the rotation of the atmosphere. The power-law
density model was Lane's innovation17 , and some exposition
of it is also given in the textbook by Fitzpatrick19. The
idea was to avoid an awkward shortcoming in the approach of
Brouwer and Hori18. The latter authors had assumed an ex-
ponential density profile, essentially equation (23) above,
with the result that cumbersome series expansions of the
exponential function are required in order to obtain certain
quadratures in closed form. Moreover, the series converge
too slowly to be useful when the perigee altitude is low, so
that the theory becomes inaccurate just when it is needed
the most.** Lane's idea was to replace the exponential
function with a best-fit power function so that the quadra-
tures could be obtained in closed form without any series
expansions. For the most part, the complete theory7 treats

drag as a numerically second-order O(J4 ) perturbation,

though ultimately SGP4 retains one term in the secular

variation of the node which contains the product of J 2 and

the drag parameter. Even with these simplifying assumptions,
the working formulae of the theory turn out to be lengthy
and complicated, and extensive truncations of the drag terms
were necessary for the original operational implementation.
However, SGP4 does retain some terms for secular drag per-
turbations of every element except inclination. The drag

parameter, known as.. B* , is the one free parameter in all

these terms. For~mally, B* is half the product of satellite

ballistic coefficient and power-law reference density. In
practice, its value is determined empirically for each
satellite by adjusting it along with the mean-element values
in a least-squares differential correction against obser-

vations, just as with the h11/2 value in the NAVSPACECOM
system.

SGP4 models along-track drag effects by representing
the perturbed mean longitude as a fifth-degree polynomial in
time. However, the high degree of the polynomial causes the

These same shortcomings were felt by Smith at the Naval Space Surveillance System in 1964,
which explains why the theory was not adopted for PPT2, either. In the mid-1960s, King-Hele offered the
most practical approach.
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prediction errors to be sensitive to errors in the initial
conditions when the total drag perturbation rises above
second order. Consequently, the fifth-degree polynomial is
truncated to quadratic when the mean perigee altitude is
below 220 kilometers. Many other formulae also are simpli-
fied when the mean perigee height is below 220 kilometers.
In particular, the secular variation of semimajor axis
reduces to a quadratic function of time, and the secular
variation of eccentricity reduces to a linear function of
time. Besides the simplifications below 220 kilometers, some

secular terms containing B* also contain the mean eccen-
tricity as divisor. (The Lyddane modification does not help
here.) These terms are omitted when the mean eccentricity is
smaller than 0.0001.

Lunar/Solar and Resonance Modeling in SGP4

The requirement to track a growing population of satel-
lites in Molniya-type and geosynchronous orbits motivated
the addition of so-called "deep space" terms to the SGP4
model. U.S. Space Command classifies an orbit as "deep
space" if its mean period is greater than or equal to 225
minutes, and SGP4 incorporates these additional terms only
for such orbits. The perturbation solution was developed by
Hujsak2 °,'2 for immediate operational use, so the theory
exists only in a truncated form. Lunar and solar point-mass
perturbations were assumed to be second-order compared to

J. and were developed by restricting the direct part of

the third-body disturbing function, expanded for the interi-
or problem in the -usual Legendre polynomials, to its leading
term. All short-periodic effects are eliminated by averaging
the disturbing function with respect to satellite mean
anomaly and Earth rotation angle, so that the solution
contains only long-periodic and secular third-body effects.
Because the theory is developed in terms of classical ele-
ments, a spurious singularity appears in the secular rate of
the node when the inclination is zero. This singularity is
avoided by omitting the ill-defined terms whenever the
inclination is less than 30. The orbital elements of the Sun
and Moon with respect to the equatorial plane at the epoch
of the satellite orbit are obtained from a simple analytical
model2.

The work of Hujsak2 ,21 also provides some limited model-
ing of resonance with the geopotential. The sectoral-tes-
seral perturbations of mean anomaly and semimajor axis are
derived for orbits with mean periods near 1 day and 1/2 day.
If the mean period is between 1200 minutes and 1800 minutes,
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then geopotential terms of degree and order (2,2), (3,1) and
(3,3) are included. If the mean period is between 680 minut-
es and 760 minutes, then geopotential terms of degree and
order (2,2), (3,2), (4,4), (5,2) and (5,4) are included. The
general form of the Kaula eccentricity functions3 turned
out to be impractical to implement in the operational soft-
ware, and some kind of approximation had to be made. In the
1-day case, the series were simply truncated after the
fourth power of the eccentricity. The resulting expressions
are accurate only for small eccentricity. Most 1-day orbits
are nearly circular, but the modeling is applied regardless
of eccentricity. In the 1/2-day case, high-eccentricity
Molniya orbits were of most interest. Polynomial approx-
imations of the full eccentricity functions were developed
for eccentricities greater than 0.5. These approximations
are not adequate if the eccentricity is less than 0.5 and
the modeling is'not applied in that case. In both the 1-day
and 1/2-day cases, the geopotential disturbing function has
been averaged to eliminate short-periodic effects, which are
subsequently neglected. The remaining perturbation is cal-
culated using a simple second-order (Euler-Maclaurin) numer-
ical integration with a 12-hour stepsize.

CONVERSION OF ELEMENT VALUES BETWEEN PPT2 AND SGP4

The differences between PPT2 and SGP4 lead to mean
elements that are defined differently and are therefore
incompatible. Even though both models are used to produce
cataloged element sets in the same standard two-line format,
it is not correct to compute predictions with one model
using mean element values determined with the other model.
The obviousness of this fact does not prevent difficulties
from arising. For example, once a two-line element set has
passed through several different communication systems, and
possibly several agencies, it is not always easy for the
user to tell which model produced it. The apparently strai-
ghtforward, and ultimately correct, remedy of adopting one
single analytic model for all space surveillance activities
turns out to raise a host of logistical difficulties which
are beyond the scope of this discussion. Meanwhile, the
close coordination needed between the primary space surveil-
lance center at CMAS and the backup center at NAVSPACECOM
requires the continual interchange of element sets.

When SGP4 users must predict with mean elements deter-

mined with PPT2, the element values must be adjusted, and a

value of B* created, to produce the same ephemeris that
PPT2 would have produced over some given time interval of
interest. Likewise, when PPT2 users must predict with mean
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elements determined with SGP4, the element values should be

adjusted, and a value of .611/2 created, to reproduce the
SGP4 ephemeris over the specified time interval. This re-
quirement does not imply that the orbit must be redetermined
from observations. Instead, standard conversion methods
which do not depend on observational data have been devel-
oped. But it should be obvious that any such conversion is
only approximate, that there is always an accuracy penalty
in predicting with converted elements, and that the conver-
sion results can be guaranteed only in a statistical sense
and not in individual cases. We have resorted to element
conversion as expedient until the larger standardization
problem can be solved.

NAVSPACECOM converts PPT2 element sets before they are
issued to SGP4 users. The converted elements are intended
for short-time predictions, nominally a day or less from
epoch, as needed to support cataloging operations. The
conversion method can be described in general terms as
follows. Given a mean element set determined with PPT2, the
epoch is changed from the PPT2 convention (time of last
observation) to the SGP4 convention (time of last ascending
node crossing). Then PPT2 is used to compute an ephemeris
extending one nominal fit span prior to the epoch and one
day beyond the epoch. SGP4 elements are differentially
corrected against the ephemeris, using slightly modified
PPT2 elements as starting values. An approximate starting

value of B" is computed in terms of hY'/2 by equating the
coefficents of the quadratic terms in mean anomaly from the
respective models.. In many cases, this initialization alone
is found to produce sufficiently accurate results. The
reason is that many satellites are in low-eccentricity, low-
to-moderate drag, near-Earth orbits. For this class of
orbits, the modeling differences between PPT2 and SGP4 lead
to relatively minor prediction differences. Full differen-
tial correction is required in the conversion for high-drag,
resonant and deep-space orbits. The method is able to com-
pensate for almost all the differences in drag modeling
between PPT2 and SGP4. However, the conversion can only
partly compensate for differences in deep-space predictions,
since PPT2 does not model resonance or lunar/solar attrac-
tion.

IMPROVEMENTS IN THE ANALYTICAL MODEL FOR SPACE SURVEILLANCE

The most serious shortcoming of PPT2 in present opera-
tions is the lack of modeling for deep-space orbits. The
shortcoming is really twofold. First, it degrades our pred-
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iction accuracy, especially for geosynchronous orbits where
the combined lunar/solar effect is almost as large as the
Earth oblateness effect. Second, it represents an incom-
patibility between the primary operations center and the
backup operations center that cannot be completely compen-
sated by element conversion processing. NAVSPACECOM's resp-
onse to this situation has also been twofold. First, in the
near term the main compatibilty problem can be solved, and
an improvement in deep-space accuracy obtained, by adopting
the same deep-space modeling that SGP4 uses. Second, in the
long term, if the standardization issue of adopting a single
orbit model for space surveillance is to be addressed com-
petently, a more comprehensive analytic satellite theory
must be developed and tested. These two responses will be
described briefly.

Near Term

The PPT3 model, soon to enter an operational test
phase, is essentially PPT2 with the addition of Hujsak's
1979 theory20 ,21. There are two minor differences from the
SGP4 implementation of the lunar/solar and resonance terms.
First, the different definition of mean motion in PPT2 must
be accomodated. Second, we have decided to retain all the
lunar/solar terms for all orbits instead of omitting them
for periods below 225 minutes. The perturbations are negli-
gible for many near-Earth orbits, but we prefer to avoid an
unnecessary discontinuity in the model. Also, omitting these
terms merely to reduce the computational load is hardly
justified with current computer systems.

Far Term

For several years, NAVSPACECOM has sponsored a research
and development task in analytic orbit theory. Some notable
advances have been made in this field since PPT2 and SGP4
were created. We believe that at least the major advances in
theory formulation must be incorporated in one model and
tested in orbit determination before an informed decision
can be made to adopt a single analytic model for operations.
Our current task deals with an improved treatment of the
geopotential and third-body perturbations. A second-order
theory, with partial derivatives, is being developed in
nonsingular variables using algebraic manipulation software
and automatic source-code generation. The basic analytical
developments use canonical transformations proposed by
Deprit. The elimination of the parallax24 is used for the
zonal problem and is a key to keeping the number of terms
down to manageable levels. A more recent transformation, the
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relegation of the nodes, allows a new formulation of time-
dependent sectoral, tesseral and third-body effects.

Some general questions have been raised by this re-
search. For a given host computer, an accuracy tradeoff
exists between a second-order theory with a more limited
force model and a first-order theory with a more extended
force model. We often find that a second-order theory is
more accurate far from epoch, while an extended first-order
theory is more accurate close to epoch. The nature of this
tradeoff is being examined. Also of interest are the trade-
offs between advanced general perturbation methods and
special perturbation methods for orbit determination. For
example, we have noticed in operations that orbit estimation
using classical Gauss-type differential correction with one
of the current GP models tends to be less accurate but more
stable with respect to variations in the initial guess of
the orbit, compared to the same orbit estimation method with
a current SP model. This type of stability is important when
one has only sparse, noisy data to work with: the solution
accuracy hardly matters if one cannot obtain the solution in
the first place. We would like to quantify this stability
difference and find out whether it is inherent in the prob-
lem or is an artifact of our software implementation. More-
over, we would like to know how the picture changes when
advanced GP or semianalytic models are compared with SP
models in a variety of estimation procedures. We think that
the traditional views of such tradeoffs may have to be
revised in light of advanced computational techniques such
as parallel processing. But NAVSPACECOM is only now begin-
ning to consider these more subtle problems associated with
maintaining an SP or advanced-GP catalog.
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APPENDIX: The PPT3 Model of Satellite Motion

Here we present the collection of formulae used to
calculate position and velocity at any time of interest,
given a set of mean elements determined with the PPT3 model
for some epoch. Equations equivalent to the currently opera-
tional PPT2 model are recovered by omitting the lunar, solar
and resonance terms. PPT2 has been documented in (Ref.1).
Documentation of the PPT3 model exists in draft form2 and
will be available for general distribution sometime after
operational testing of the software is complete. Besides the
two references just cited, essential background on the
lunar, solar and resonance modeling is contained in the
paper and report by Hujsak20 ,21 , the book by Kaula2 and
(Ref.22). The zonal modeling in both PPT2 and PPT3 is based
directly on the papers by Brouwer 4 and Lyddane 6 . It is fair
to say that trying to merge these different theories into a
consistent model has exposed the weaknesses in all of them.
There are still some unresolved questions about implemen-
tation details in PPT3, which will not be settled until
testing is complete. However, even though the formulae
presented here are subject to revision, we do not expect
major changes. At least until PPT3 is adopted for oper-
ations, it is worthwhile to have a summary of the model in
its current state of development.

The initial mean elements at epoch to are

4l mean anomaly
ný mean motion

h1112 ,h1/6 empirical decay parameters
eo eccentricity
I011 inclination

g96 argument of perigee
hý right ascension of ascending node.

In present space surveillance practice, these elements are
referred to the coordinate frame "mean equinox and true
equator of date", the date being the epoch of the elements.
This means that, for computational expediency, precession in
right ascension has been accounted for up to the epoch of
the elements but other precession effects and all nutation
effects have been omitted. The resulting frame is assumed to
be inertial to within the accuracy of the orbit model.
Internally, PPT3 and PPT2 use a system of canonical units in
which angles are in units of radians, distance is in units
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of Earth radius ( Ra ), and the time unit is chosen so that

the product of the Newtonian gravitational constant and

Earth mass ( p,,=Gm, ) is numerically equal to unity.

Dimensional zonal perturbation constants are

Ic2 - *1J2R2 - VS (0.48416o5) X10-3 R'

k 3 - -JTR,' VP7 (0.95958) xo10-R3 4 4
k 4 == I 1(0.55199) xK10'6R8 8
k = -J,5R = VIT (0.65875) ×10o-Ru

For notational convenience, define

e = cosl/' , -e 0

Calculate mean semimajor axis a/o corresponding to the mean

motion, remembering that the PPT2/3 mean motion contains the
zonal secular perturbation of mean anomaly. By definition,

no" - •a (1 + 6Am
Fa 0

Then we have

a/ = ,1 - , /•" ('Z)1/
no

where dimensionless even zonal perturbation parameters are

a0~n 'i •: " n
ao i

and

8. -y/2 (-1+3(2)

3 Y2 2 [-15+16q+25 2 +(30-96q-9 0¶ •)O2+ (105+144i+25I 2 )O 4 ]

+ y/ie0 (3-3002+3564)

Iterate the afo equation 5 times, using a//= (p,/n //2)1/3 as

the initial guess in evaluating the right-hand side. Then
the dimensionless odd zonal perturbation parameters are
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aa. '_ ao/ 11

Secular rate of argument of perigee with respect to mean
anomaly, due to zonals:

(dg~ff) = LF-l / (-1+502)

+ _2/2 [ -35+ 2 4l+2512+ (90-1 9 2ii -126 12 ) 02+ (385+360q+45q2) 64]

32 Y2 ~ ~ 22

+6 y '/ [ 1:,-sn+(-270+12612) 02+ (385-189n,12) &1

Secular rate of node with respect to mean anomaly, due to
zonals:

-/ - // i-3y2 8 2 [(-5+121j9 =))(-35-36il5)2{3

+ 1 (-.702)0}+ iy /(5-3 T2) (3- 2

Secular rate of semimajor axis with respect to time:3 a0"( 2
Secular rate of eccentricity with respect to time, due to
drag:

,1_ eo l'2 1

ao'l

Critical-inclination divisor:

CRIT= 1- -exp(-100x 2 ) [ 2x' (_1)¶9nX2f (+[ (m2n Ix =-0 (n+1) I Ji +exp(2=x2))

where P = 100/231 and x= 1-502 . The value CRIT is used

in place of 1/ (1-502) wherever this factor appears.

Coefficients for long-periodic zonal terms:

LPE 1 = 12 if .Y3 / + / (4 +3 eo81-962- 240
4y2 64y2 1-50)
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el 2 s in2lo 757]
LPE2 = 10 Y'I-i520•)[- -527 (1-70(2)

1-50)2 8 12y2J

LPE3 = -n2 sinX11// [eo ,1-502- 1664[ 6L 64y•' 1-062

LPI1 =-eo 0 (4 +30e') 1-902_ 2404I
4 y2 64y'0 6 02

e /0 sinloH / 57/ 1LP12 0 I ]L2(1-1502)- 2Y/ (1-702)
1-5(-2 8€ -s2 J

LP/2 7 "002 (5Y(' 1604LP=eo 6 654y2 1-502)

LPH1 - e,//60 / -+ 51/5(4+3'2 -(2 4)
4y/ 64y/ + 0 ) 1 -562 2 'T2 2~ ___

-. 6'0 Sf2I /( j[3+ 1662 40084ell si \64[ ys + _ _-52),yI 1-50

LPH2=

800 ~.200' 5y r1602 4004
PI- 02 62silo)I[2+647•5 19-52 (+9o2)2

LP3= _ e o/0 2 [e02 5 y'( 1604

3 6 (;4y'2156)

e.Z /el60s in2 X011 -!y5 )[ 3202 + 800'
9 0 6~ 4y') 1-5e2 (1-562)2

2J
LPL1 sin4 _.+ 5 246'Y9

4264y'2150)
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LPL2 = e /2 (1-1502)i- •Yy-- (1-702)
1-0 12y2

LPL3 3 X011I 7e02 " __

s I 6 L 5 1-502 160'
6 64y•2  1-502J

LPSI e= e'tan-I-- Y3 42.-+-515 (4+3e//)Il-902_ 240'[24y1 64y- -•- -52
1 2 642

/0 2 ) e 5 Ys I a/ 11 1602 4002
+ tan-L 6ec ssin I -- +3el +51 1 +

UL 64y2) eoq3  +

2 -1 2 -01-502 +54 +

-0 8iI+ +I g2 2 ~ i49~ ~1

4Y2 /_502 64y'2

_ 32rfY +80 +' /00 Y[+ 6' 40

3 sin 2SL2 (1-1582) /- -25LPS = 1-562 [8 12y2

2 {t2+en )11(2+3e1)02 40(2+5e")04 400el

8 1-502 (1-5002)2

5YA 1 'l~/2-(+01)2 8(2 +5e"')0' 80eo 6
12y' 1-562 (1-562)2 i

2 91

- fy~F 002 200 51s5 [3 16062 + 4064 i
118.1 -j582 (1-5()2)2 J64y/2I 1-562 -(1-562) 2

LPS3=

3[+1 6 I64Y'2  1-562

2~e0tai9.in2ii Ys 3202 800'
-0 2 11 +

64Y2 1-502 (~0)

Third-body elements and true anomalies at the satellite
,epoch are calculated in terms of the following fundamental
quantities:

91



IL = so5 . 1 4 5 3 9 6 3 7 4 lunar inclination on the ecliptic
Is= e = 23 0 . 4441 solar incl. on the ecliptic (obliquity)

eL = 0. 05 4 9 0 lunar eccentricity
es = 0. 01675 solar eccentricity

nL= 1.583521770x10-4 lunar mean motion (rad/min)
n= 1. 19459 x10-5  solar mean motion (rad/min)

as = 0°' 0 right ascension of solar node
Ws= 2810.2208 argument of solar perigee.

The two third-body perturbation parameters are given by

-4 m + m.)

where mx is the third-body mass and m. is Earth mass. In

particular,

Ms and mr ME
ms + ME 81.53

so that

KL = 4.796806521x10-7 rad/min
Ks = 2.986479720xIO6 rad/min

The initial third-body elements and other parameters are
given at the epoch

t = 1900 January 0.5 = JD 2415020.0

For the epoch to of the satellite orbit, calculate the

right ascension of the lunar ascending node on the ecliptic
as

a= (d 0 + (dAt 0 + OAt 0
2 + (rAAt 0

3) mod 2n

where Ato = to - tox and the coefficients are obtained from

(Ref.22).

Lunar inclination with respect to the equator:

coslL = cosecosIl, - sine sinl•cosOU

sinlL = + AI - cos2IL

Right ascension of lunar ascending node on the equator:
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sinfl = sinXu sinQA and cOSQL = +/1 - sin2QL

Then also

sinA = sine sinQ.
sinlr,

cosA = COS. 2 LCOSQU + sinLQsiniQ COSE

A = tan-' (sinA/cosA)

Longitude of lunar perigee on the ecliptic:

P-U 4 o + z 4Ato + 241At 02 + 7Aot03

where the coefficients are obtained from (Ref.22).

Argument of lunar perigee with respect to the equator:

(aL = r - a + A

Third-body mean anomaly at satellite epoch:

1 =(l+ + 1Ato+ JXAt 02 + IxAto3 )rod2•

where the coefficients are obtained from (Ref.22). The
solution of Kepler's equation for third-body true anomaly at

satellite epoch neglects O(eX2) errors:

fx = 1x + 2exsinlx

Special functions and parameters for third-body terms, which

depend on the satellite elements e". ,0", go". h", and

which are computed for each third body:

a, = CosCxcos (h01-Qx) + sinax cosI. sin (hl'-Qx)
a3 = - sinwx cos (ho'/-Qx) + cos~x coslx sin (ho'-Qx)

a7 = -cosCoXsin(ho"-Qx) +sinaxcosIxcos(ho'1-x)

a. = sincaxsinIx

a9 = sin(axsin(ho/-Qx) + cOxCOSIxCOS(h11-Qx)

a1 o = cosGxsinil
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aacoxý +a, sin,"

a, a. acosill + alosinl0 l

a4 = a, cosgI,' + a,0 sinIg('

xa - a, singo"~ + acosgo"

x, = - a, singo' + a,0 cosgo'

X.5 a singll x,= a~cosg,, X7a ossin9 osol

Z3, = f223i

Z = 6 a2+3 2)sg +a sing0)Z.

Z2= 12a(sing +3X +a('co//2) Z3

Z3= 6a (X22ngX42 +a(1 e"2) Z3

aZin 1', X6= a6I76 sag 0 , X =aecsg , X8 = a7-cosg

Z13 ~~= -6X,64X 1X6e'( 2-6X2X.-X

Z21= X~+63 7+= o (2X 43Xý.s-6X

Z22~~~ =-XX+6l6X4 X,+6X3X, + eo (-24X2X 1 2Xl664X 7 -6X 3X.)
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Z2 , 6X2X6+6X4X8+eO(f"(24X2X6ý-6X 4X8 )

Third-body secular rates with respect to time, computed for
each third body:

15 / 6We 11 (X1X3 +X2X,)

Kno

W) X Kxnx (Z 11 +Z13 )

no

(ýH.cs~l. = Kx (Z 3 1 '-Z 3 3 -6)

no

(s in10")~ = II (Z21+Z23) if sinl01 k sin3'

0 if sinl0/, < sin30

(li') = sinlo0

s in ITO

Secular update to time of interest, including zonal, drag
and third-body effects:

22 6

MH= (Mll+ AM") mod 2 7

e 0eD'+6A'(t-t 0 ) + (W)L.(t-to) + (6) 5 (t-t 0 )

e/ min (max (0.0, e") , 0.999991

a" = ao' +&H(t-t0 )

aH 1  max (R a"ý)
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h" = ho' + ( d A") &M11-+ AM, + (+"C S AM"
z no no

g/ = go' + (d )AM/ + ()l Am" + (fl AM"
Ne)z no no

I = z/'+ (.1")L(t-to) + (1) (•-to)

Solve Kepler's equation and calculate satellite true anomaly
based on secularly updated mean elements:

M1 = El- ellsinE'

cosf'= cosE- e// and sinf' = - sinE
1 - ellcosEl 1 - e/ 1cosE'

If the mean period Toll = 2l/n•' is between 1200 and 1800
minutes inclusive (the 1-day case), compute resonance cor-
rections for mean anomaly and semimajor axis. The Kaula

(1,m,p,q) indices of interest are (2,2,0,0), (3,1,1,0),
and (3,3,0,0). Several dimensionless geopotential constants,
defined by

2Cý,.+ S2 and tan-Sm
rn tCim)

where C1. and Sim are the sectoral/tesseral coefficients

in the form of the geopotential adopted by Kaula 23 , are in-
dependent of the satellite orbit. In particular, we use

Q31 = 2.1460748x10- 6  131 = 0.13130908
022 = 1.7891679 x106 122 = 2.88431980
033 = 2.2123015 x10"7  133 = 0.37448087

The Kaula inclination functions FI,(I) are closed expres-

sions:
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3 (1 ÷cos1o11) 2
F220 -Z

F311  - si2//(1+3cOslo//) -2 (1+CosIo)
16 4

F330 = 15 (1+cosl10/) 3

8

The Kaula eccentricity functions Gl,,(e) are evaluated by

omitting terms of the order indicated:

G2e= 15e/2+e13e'/4+ ... (e)

//2
G31 o = 1+2e0 f+ ... Oeo'

G300 = 1-6eo +4'23 e"4... O(eo(j)

Special constants:

//23no0
D= a F31IG31oQ31

a0

D2 ••2 f 2 0G20 OQ22
a0

//29n0o
D3= a0 F 3 3 0 G300 Q3 3

a0

Initial conditions for numerical integration:

t = M0 l + go"+ h0"- ,( to)

n(to) = no

where OG(to) is the Greenwich sidereal time at the satel-

lite epoch. The following pair of differential equations is
integrated numerically:

I = n+A-OG

h = D1sin(A-X31 ) +D2sin(21-212 2 ) +D3sin(31-34 3 )

97



where OG is the Earth rotation rate. The constant A is

the total secular perturbation rate in mean longitude,

reckoned at the epoch. Recalling that, by definition, no'

already contains the zonal secular perturbation rate of mean
anomaly, we have

A W) d9") ( + n //( d / + L. S

The integration formula is

I(t+dt) = I(t) +I(t) (dr) +X(It) (dt) 2/2

n(t+dt) = n(t) +A(t) (dt) +hi W) (dt) 2/2

where the stepsize dt is initially equal to 12 hours. On

the last integration step, dt is changed to meet the time

of interest. The second derivatives are evaluated as

h = 1 [DIcos(1-1 3 .) +D 2 cos(21-2X2 2 ) +D 3 cos(31-31 3 3 ) ]

Compute resonance-corrected mean anomaly and semimajor axis:

M" = [X(t) -g"l(t) -h"l(t) +00 (t) ] mod 27r

// //+2 a{/' (Sn
a a 3 (a = ---- On), =n-no

End of resonance corrections for 1-day case.

If the mean period T,," = 2,/xln is between 680 and 760

minutes inclusive (the 1/2-day case), and the eccentricity
is greater than or equal to 0.5, compute resonance correc-

tions for mean anomaly and semimajor axis. The Kaula (l,m,p,q)

indices of interest are

(2,2,0,1), (3,2,1,0), (4,4,1,0), (5,2,2,0), (5,4,2,1),
(2,2,1,1), (3,2,2,2), (4,4,2,2), (5,2,3,2), (5,4,3,3).

Dimensionless geopotential constants:
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022 = 1.7891679 x 10- 6  122 = 5.7686396

032 = 3.7393792 x 10-7  132 = 0.95240898

044 = 7.3636953 x10- 9  144 = 1.8014998

052 = 1.1428639 x10- 7  1 52 = 1.0508330

Q54 = 2.1765803 x10- 9  154 = 4.4108898

Kaula inclination functions FI,(I)

F22 30 = (1+COS/oII)2
4

F221 = 3 sin 2o

F321 = -15s in-To"(1.-2 cOslo,-3cOs21oi!)

_32 =15 sinlo" U +2cosiI0_3 cos2i/o/)F,21 - 48

F 32 15 Sin•ioF441 = 10sin 2I0 ( 1+COSIOII) 2

4

F442  315

F5 2 
315[rsm3Ii -52 4 "r2COS2 o)JF5 22 - 35sinI/(1-2csIl°!-5coszIl..+sin"lr,(+-2 !+4IcosI,/+2cI l3

16 0 0 2

F542  945 sini,/ 2_-8cosio,+cos 1i,(-12+8cosZ 01o+1Ocos2 ioJ)F52 32

F.54  945 sinZo, 2cos2z0/,12+8c Cos1.-1cosS210,)_2_8coslo//]
32

The Kaula eccentricity functions Gl,,(e) are approximated

by polynomials for eo k 0.5 (primes omitted for clarity):

G2 11=+3.616-13.247eo+16.29e 0 , e 0 .65

=-72.099+331.819eo-508.738eo2+266.724e' , e0 >0.65

G2o 1=-0.306-0.44(eo-0.64) for all e,>0.5
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23G310 =,-19.302+117.39e 0-228.419e0 +156.591e' e e0<0.65
2 3

=-346. 844+1582. 851e0,-2415.925e'+1246.113e 3 , eo>0. 65

G322=-18.9068+109.7927e0 -214.6334e,,2-145.5816e 3 , e -,<O.65
2 3

=+342. 585+1554.908e0 -2366. 899e0 +1215.972e0 , e,>Q. 65

2 3G410=-41.122+242.694e0-471.094e0 +313.953e0 , e0 0.65

=-1052.797+4758.686e0 -7193.992e,,23651.957eo , eo>0.65

2 3

=-3581.69+16178.11e0,-24462.77e0,+12422.52e 3 , e >0.65

G520=-532.114+3017.977e0-5740.O32e,,+3708.276e' , eo:0.65

=-1464.74-4664.75e0 +3763.64e0 , 0.65<e0•0c.715

=-5149.66+29936.92e0 -54O87 .36e 2+31324.56e 3 , e >0.715

G521=-822.71072+4568. 6173e0-8491.4146e 2+5337.524e 3, e,0(.70
= -2 3=51752. 104+218913.95e0 -309468.16e0 +146349.42e0, eo0 :0.70

G532=-853. 66+4690.25e0 -8624.77e 2 +5341.4e0 3 e,<0.70

2 3
-53-400.23.8+174708.8lo9e0-- 429.4e 0+115605.82e e,<e0 .70

2 3

--37995.78+l61616.52e0 -229838.2eo +109377.94eo , eok0.70

Special constants, evaluated for each of the 10 (1,m,p,q)

combinations of interest:

112

ao

Initial conditions for numerical integration:

n (to) = no

The following pair of differential equations is integrated
numerically:
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I = n + A-20,

A = E Dlqsin[ (1-2p) g"(t) +2X-11
(1,m,p, q)

The sum is taken over the 10 (1,m,p,q) combinations of

interest. The constant A is a combination of secular

rates in mean anomaly and ascending node. Recalling that the
initial mean motion already contains the zonal secular rate
of mean anomaly, we have

A + s ( dh=l) +.2fr + 2 (?")
dM1Z

The second differential equation requires the mean argument
of perigee at any time since epoch:

91, ~ ( )=g"t + g")= + _r/) t o

The numerical integration method is the same as for the 1-
day case, and the stepsize is the same. The second deriv-
atives needed in the method are

I = .6Dqo[>P)I~)~~m

(h(mp, q)

Compute resonance-corrected mean anomaly and semimajor axis:

Mn = [i(t) -2h"I(t) +20G(t) I mod 2n

a " aa+ (6a) ' (8a),, = 3 no (8n)R ' (8n)R n-no

End of resonance corrections for 1/2-day case.

Third-body long-periodic terms, evaluated for each third
body:

F2 = -sin2f" -1
2 4

F3 = - sinfxcosfx
2
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(a1 e)x 301 X' (F2 (x2X3 +X1 X4) +F3 (X2X -X~X3 )]

(51-,) X F2 Z22 +F3 (Z11 -Z, 3 ) I
no 11

3.M) ~ , x xI 2 Z 2 +F3 (Z 1 -Z 3 ) -3 exsinf, (7'+3 e 11)

no

(81g+coSI",18h)x = rK F2 Z3 2+F3 (Z3 3 -Z 3 l) -9e~sinfx]
no

(Sinl"/61h) X -v ,,F 2Z2 2 +F3 (4 23 -Z421 ) I

z)x= (81M) x+ (8 1g) x+ (81h) x

=(8 1 M ., + (819  +I CosIII8lh).,+ tanLf (sinl/"81h) x
2

Zonal long-periodic terms in Lyddane form:

(ale) z = LPEI. sing"/ LPE2 cos2g"/ + LPE3 sin3g"

(81z= LPIl sing//+LP12 cos2g + LP13 sin3g"/

(sinl"581h)z = LPHI~cosg" + LPH2 sin2g" + LPH3 cos3g"/

(e//,5) I* = LPLlcosg/ + LPL2 sin2gt + LPL3 cos39"'

(81 4z) = LPSI cosgll + LPS2 sin2g"/ + LPS3 cos3g//

Auxiliary quantities for zonal short-periodic terms:

W17 = fl + e//sinf - M11

W20 = ((e/cosf'+3) e'cosf'+3)cosf'

W21 = 3sin(2g"+2ff') + 3e'/sin (2g"+ff') + e/1sin (2gU/+3 f')

W22 = (1 + e//cosf'/) (2 + e/Icosif') / q'2

Zonal short-periodic terms in Lyddane form:
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(8 2 a)~ z -i2- [(-1+362) ((1+e/Icosf') 3 -13)

+3 (1-02) (1+ettcosffl)3cos (2g//+2f')]

(8 2e) z= [ (-1+3O2)(20+e//r + ))+3 (1-02) (W20+e")cos(2g"/+2f')

- t 2 (1-62) [3e/Icos (2g"l+ff) +e"cos (2gl"+3f')]]
/

(621) z = -L2sinXI[ 3 cOs (2g/1+2f) +3 e"cos (2g'l+f/) +e&tcos (2gll+f')]2

(e1 2M) Z n 3 Y2{2 (-+ 36 2) (W22+1) sinf'
4

+ 3 (1-O2) [ (1-W22) sin (2gl+ft/) + (W22 + 1/3) sin (2g"/+3f')]}

Csinl8 2h)~= - 12 (6W17 -W21) sinl'/

2

(6 2 z) z =

n6"(e"6) ( 1+-)- +(6 (1+20-502 )WI7-(3+20-50 2 ) W21)-efle 2MZ 3 1+11
Total periodic perturbations in Lyddane form:

6e = (81e)L+ (8 1 e).g + (81e)z+ (8 2 e)z

SI = (S11) L + (811) S+ (81I) Z + (82X) Z

(sinI/18h) = (sinIt"81h) L + (sinx"52 1h) s + (sinI"161h) z + (sinl//62 h) z

(el8M) = (el"81M L + (elSjMy . + (el"1M) z + (eS 2M) Z

8z = (S6z) L + (8 1 z) S + (8 1 z) Z + (62 z) Z
Lyddane intermediate quantities:

DE = ell+be

DI = sin- + 1 (8I) cos-
2 2 2
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DH = (sinI"8h)

2 cos-V,
2

DL = (ell6M)

z = Mll+gll+htt+iz

a = a"l+ (8 2a)z

Osculating elements by Lyddane method:

e = /DE 2 + DL2

M = tan-i DE sinMM + DLcosM"'1
( DEcosM1' - DLsinMII)

cosl = 1-2 sin2 = 1-2(DI2 +DH2 ) , sin!= V1-cos 2'2

h = tan-' DIsinh/" +DHcosh"/
(DIcoshII -DHsinhI)

g= z-M-h
Calculate position and velocity from osculating elements.
First, solve Kepler's equation and calculate true anomaly:

M = E- esinE

cosf = cosE- e and sinf = Vl-esinE
1- ecosE 1 - ecosE

Radius to the satellite:

a(l-e
2 )

1 + ecosf
Unit radial vector:

?oshcos (g+f) -sinhsin (g+f) cosI
0= inhcos(g+f) +coshsin (g+f) cos!I

[Inhossin (g+f) sin!
Unit transverse vector:

-coshsin (g+f) -sinhcos (g+f) cosl)
= -sinhsin(g+f) +coshcos (g+f)cosIX

COS(g+f) sin!
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Unit normal vector:

fsi hsinxl
•= I- coshsilnI)

cos`II
Satellite position:

Satellite velocity:

V - [(esinf) 0 + (1 + ecosf) 9)]

105



TECHNIQUES OF ORBIT DETERMINATION USING
MINIMUM DATA, ACCOUNTING OF THE FEATURES OF

RUSSIAN SPACE SURVEILLANCE SYSTEM

V.F. Boikov
"Vympel" International Corporation, Moscow

INTRODUCTION

Classical orbit determination techniques using minimum data have
nearly two-centuries history and are developed to high level of perfection.
However, specific features of Russian Space Surveillance System (SSS)
require consideration of two issues significant for development of algorithms.

i) The measurements, acquired by Russian space surveillance radars
comprise essentially not equally accurate components. In particular,
elevation angle and its rate are subjected to significant errors.

ii) The SSS radars are located within the territory of the former USSR
and thus the gaps between the observations of one satellite may range from
several revolutions to several days (for small-sized objects).

Two types of orbit determination techniques using minimum data were
developed respectively..

i) The set of methods for determination of Keplerian orbits using
combined data which include both position and velocity components.

ii) Technique of orbit determination on the basis of two positions when
secular evolution of orbit within the interval between two measurements
is taken into account.

Let us treat these techniques in more detail.

1 Methods of orbit determination using
combined data

Assume that tracking of one satellite by two radars (of by one radar for
two intervals) produces observation vectors f, = (fll, f12, f13, f14, f15, f16)

and f2 = (f21, f22, f23, f24, f25, f26), related to the moments t, and t 2
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respectively. Using six components (out of twelve) of these vectors and
the temporal interval, Keplerian orbit can be determined.

We will deal with the class of orbit determination techniques requiring
to solve the system of two non-linear equations.

Two classical orbit determination techniques exist.
i) Technique of orbit determination using phase vector (three

components of position and three velocity compoments).
ii) Technique of orbit determination using two positions.
Thus, our generalizations of classical techniques will be called:
i) Technique of complementing to phase vector (TCPV).
ii) Technique of complementing to two positions (TCTP).

1.1 Technique of complementing to phase vector

The method is obvious.
Assume we know 4 components of phase vector f, and two components

of phase vector f2. To be deterministic we take as known f1i, f12, f14, f15,

f21, f22.

Complementing the vector f, with approximate values of components
f13, f16, we obtain complete phase vector f = (fn, f12, f13, f14, f15, f16).

Propagating this phase vector f to the moment t2 we can calculate two
respective components of the second phase vector.

Denote these compnents as: fca(f13, 116), f2cal(f13,f16).

Thus TCPV algorithm means the search for solution of system (1).

f21 = f~'(f13, fl6) (1)
f22 = f2c2'(f3, f16)

1.2 Technique of complementing to two positions

Initial data for TCTP are four (out of six) components of two position
vectors and two components of two velocity vectors. The unknowns
to be determined are two components of two position vectors (to be
deterministic: f13, f23).
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Taking their approximate values we solve classical task of orbit
determination using two positions. Equating the differences between thus
calculated components of two velocity vectors and their given values we
will obtain the system of two non-linear equations.

Taking into account non-linear equation of classical task of orbit
determination using two positions we will have the system of three non-
linear equations for three unknowns: two components of two position
vectors and the variable of classical task of orbit determination using two
postitions.

Using special transformations one can obtain the system of two non-
linear equations for two unknown components of two position vectors (to
be deterministic: f13, f23).

Derivation of these equations is based on Solution of auxiliary task
presenting velocity vectors V 1, V 2 via position vectors rl, r2 and certain
auxiliary quantities.

1.3 Auxiliary task

Denoting rl, r2, V1, V 2 satellite's radius-vectors and velocity vectors
in fixed geo-centric coordinate system for two moments, we have the first
integrals of Keplerian motion:

i)areas integral
[r1, VI] = [r2, V21; (2)

ii)energy integral

I - 2./r, = v2- 2-/r; (3)

iii)Laplace integral

(V1
2 - //rl)-rl- (rl, V1 )V 1 -= (V2 - FI/r 2).r 2 - (r 2, V 2).V1. (4)

Relationship of velocity vectors V1, V 2 to measured velocity components
we write in the form of linear equations :

(k1, Vp,) = 17, (5)
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(k2 , Vp2 ) = '2, (6)

where P, and P2 are equal 1 or 2.
The vectors kj and k2 depend only on rpl and rp2 respectively, and

scalars Vb1, 0 2 in addition depend on measured first or second velocity
components respectively.

Resolve velocity vectors into radial and transversal components:

V1 = Vlr + Vln (7)
V 2 = V 2r + V 2n f

As follows from areas integral

V, = (c, n, r.)/r, (

V2,. = (c,, r2 )/r,, 2

where n - the vector, normal to orbital plane, determined using the
formula

n = [Ir,r 2 l/(rlr 2 sin so), (9)

S- the angle between vectors r, and r2 and c = [r, V].
As follows from equations (7),(8),(9) :

V1 = r1 (Vlr - ccot~o/rl)/rl + r2c/(rlr 2 siny) (10)
V 2 = r2 (V2, + ccot/r 2)/r 2 + rc/(rlr 2sin o)

Equations (10) comprise three unknowns VIr ,V2M, c. Equations (3), (4),
(5), (6) can be used to determine them and it can be done in several ways.

a) System of three linear equations
Scalarly multiplying equation (4) over V2-V 1, we shall obtain equation

((,r . - r.), (V2 - V1)) = 0, (11)

Substituting there equation (10), we will have linear with regard to Vpr,
V2 r, c equation. The other equations are equations (5), (6), as mentioned
above.
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Yu. S. Savrasov was the first to propose this method to determine three
unknowns Vir, V2r, c 1

b) System of two linear and one quadratic equations.
In the previous system we will take equation (3) instead of equation

(11), that will turn (after substituting expressions (10)) into:

c2(1/r' - 1/r) + V1 - V2r+ 2(l/rl - 1/r2) = 0. (12)

System of equations (11), (4), (5) is simple to solve.
c) One quadratic equation.
Multiplying (4) respectively by r2, r, and using equations (10), we will

obtain:

V, = rjy(1 -cosWo)/csinp -c/(r 2 sinrW) + r 2c/(rlr 2 sin W) (
V 2 = r 2 i(cos W - 1)/csinýo+ c/(rlsin o) - rlc/(rlr 2sin W)

with one unknown c.
Substituting these expressions into one of measurements' equations, for

example, into (5) we obtain quadratic equation for c:

c2 +p. c+q = 0, (14)

rze
b1r 1r2 sin p (15)

q (1)Pl prr 2(ki, rpi)(1 - cos p) (16)
rpi(ki, (r 2 - rj))

Having determined c from equation (14), from (13) we shall obtain
relationship between velocity vectors Vj, V2 and position vectors r-, r 2.

"1,'OIpejxeueHHe Op6HT HO CMemlIaHHUIM •JaHHLIM", KocmHiRecKHe HcCJIeAOBaHHi, T. 10, BMn.4,

c. 494-498.
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1.4 Derivation of the main system of two equations

Having solved auxiliary task using one of mentioned techniques we will
have formulas of the shape V, = Vl(f1 3, f23), V 2 = V 2 (f 1 3 , f23), which are
to be substituted into Kepler's equation (17) :

n" (t2 - t1) - 2k7r + [(r2 ,V 2) - (r1,Vl)]/a 2nT- (17)
F accos {1 - [rlr2 - (r1 ,r2)]/ap} = 0,

where k -number of revolutions, n,p, a - are obtained using rl, V1.
Equation (17) together with one of equations not used in derivation of

formulas for V 1, V 2 comprise the system of two equations for unknowns

f13, f23.

1.5 Rationale for the choice of technique to solve
auxiliary task

For all of techniques for solving auxiliary task, in the plane of
independent variables f13, f23 the points exist, where solution of auxiliary
task degenerates.

For case a) the condition is det = 0;
for case b) this is the condition when a system of two equations with

three unknowns is not solvable with regard to arbitrary pair of unknowns;
for case c) this is the condition [r,, r 2] = 0 of collinearity of vectors r1

and r2 .
More detailed analysis reveals that certain interesting for aplications

cases exist when solution of auxiliary task using techniques a), b) is
degenerated for the whole plane of independent variables f13, f23. For
example, assume one radar measures for two moments t1, t2 spherical
angles al,6ia 2,b2 and their rates &1,&2 with respect to not moving
Earth. Since the Earth moves slowly (in comparison to the movement
of low satellite), solution of auxilary task using methods a), b) turns to be
very poorly determined thus resulting in divergence in solving the main
system of equations. Corresponding effect for linear equations brought to
life optimal elimination techniques.
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For TCTP, technique that does not degenerate was discovered to
solve non-linear sub-system of three equations (i.e. degenerates only for
practically not interesting case of collinear vectors rl and r 2).

1.6 Non-symmetrical task

The main system of TCTP equations comprise Kepler's equation
(17) and rather simple equation for velocity measurements (5) (or (6)).
Simplification of the algorithm can be achieved if equation (5) will be non-
symmetrical: one component of the position will participate in essentially
simplier way than the other. Then this component can be rather simply
determined using this equation via the other one and from computations'
point of view the task will be reduced to solving equation (17) for more
complex component.

This idea is realized for non-symmetrical set of initial data

(R1,I R2, o01, 02, 12 k)2))

where R 1, R2- ranges for respective moments.
Taking into account (10), (5), (6) lead to:

2
w1c2 + 17Yrir2 (1 - cOsy) = -¢ 1r 1r 2 COS
w2c2 + ^/2/Lrlr 2(1 - cos ý0) =- -0 2rlr 2 cos (18)

where

w= (k1,r 1 )- (kj,r 2), Yi = (k,,r2)/r 2, i= 1,2.

Eliminating c, we obtain:

(a, (ri - r 2))2 = Xrlr2(1 - cos W)(b, (rl,- r 2 )), (19)

where

X = (7y20 1 - 71V2)//', a = y1kl - 7 2k2, b = 02k, - 0 1k2. (20)

The values X, a, b depend only on angular variable 62.
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Relationship of ri to angular variable 61 can be written as follows

ri = r10 + ric cos 61 + r18 sin 61, (21)

where quantities r1o, rio, rl, depend only on angular variable 62 and do
not depend on 61•

Substituting (21) into (19) we obtain final equation, that is omitted
here due to its unwieldy character. This equation replaces equation
(5) for non-symmetrical versions of TCTP. Rather simple investigations
demonstrate that equation (21) is algebraic equation of the eighth order in
tan (81/2). Assuming small angles 61 (that is valid under our conditions),
equation reduces to equation of the fourth order regarding the angle,
that can be solved in radicals. Obviously, solving these equations poses
much less difficulties in comparison to the primary task. Finally the task
is reduced to solving equation (17) for 62, and for each step of the process
variable 61 is preliminary determined using equation (21).

1.7 Numerical methods and experiments

Proposed techniques were studied in the course of extensive set of
numerical experiments. The findings of these experiments in brief are
as follows. For real range of orbital parameters (only low orbits were
considered) and radars' fields of view the problems turned to be essentially
non-linear and having up to 6 roots. Special numerical technique is
developed to obtain global solution (all the roots).

Outer module of this procedure organizes the movement along the
lines of outer contour of the domain of two independent variables (in
our experiments this domain is rectangular) and consequently finds all
the intersections of the level line of the first equation (1) with the contour.
In case such intersection is found the inner module starts operating.

The inner module arranges the movement along level line of the first
equation until the boundary of the contour is reached. In case intersection
with the level line of the second equation is found, the determined root
is refined using Newton technique. Control of the step along the level
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line is realized to make the steps far from the level line possibly greater,
diminishing them in course of approaching the root.

All boundary problems, reduced to two non-linear equations using
above mentioned techniques were solved for 10 typical orbits. Special
numerical procedure did determine true root in course of the search for
global solution in all the cases.

Reassuring results were obtained for non-symmetrical problems.
Experiments produced one root, very rapidly refined by parabolas' method
(the inner equation was solved using Newton's method). The rationale for
different behaviour of symmetrical and non-symmetrical problems are not
clear enough.

2 Orbit determination using two positions
taking account of the evolution.

If the interval between two measurements is a day or more, the most
informative for orbit determination set of components (among six of them)
is a set of two positions. However, in this case orbit's evolution is to be
taken into account. Let us consider Keplerian case fist.

2.1 Non-degenerating case of orbit determination
using two positions for Keplerian approximation

Deriving his classical technique Gauss used the system of two equations:

rl + r2 =2asing2 + /cos g, (22)

V (t2 - t1) = 2g - sin 2g + na-1 sing, (23)

where
g = (E 2 - Ei)/2, ,r = 2Vr-/rcos f,
2f = 02 - 01 - angle betwen position vectors ri, r2.
El, E2 - eccentric anomalies,

01, 02 - true anomalies.
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Gauss transformations of this system are intended to use hiper-
geometric functions in the shape of computationally efficient chain
fractions. Thus the goal to develop well converging procedure (for
small angles 2f) was achieved. However, these transformations result in
singularity rising for 2f = 7r, and poor convergence for large and medium
angles 2f. Excellent study of this issue, together with technique to shift
the singularity are presented in the paper R.H. Battin and R.M. Vaughan2 .

When orbital evolution is taken into consideration the equations are
essentially accomplished and their reduction to any sort of known functions
seems unrealistic. That .is why our technique directly uses equations (22),
(23).

The algorithm performs numerical solving of the equation:

Z(g) - Y(g) = 0, (24)

where

Z(g) = a Y(g) (25)

a, and a2 are determined from equations (22) and (23) respectively.
The search for Z(g) and Y(g) is fulfilled using Newton technique with

modifications, limiting the step and ensuring convergence. Equation (24)
is also solved using Newton technique.

After upgrades following experimental tests the method demonstrated
convergence for all the problems.

2.2 Taking account of the evolution

We will take into account only secular evolution from second zonal
harmonic since it predominates for long intervals.

"2'An Elegant Lambert Algorithm", Journal of Guidance, Control, and Dinamics, 1984, v. 7,
No. 6, pp. 662-670.
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Secular evolution from second zonal harmonic is present only for
angular parameters and is expressed by formulas:

A -t 3 J2a'OA" (26)
2 p2

3 J2 a2( 1/2 -5/202)
2 p2 2 t, (27)

Al 3 J 2a,(1/2 - 3/202) • - e2At, (28)
2 p2

where
0 =Cos i, At= (t2 -tl), p =a( - e2),

Af• - evolution of longitude of ascending node,
Aw - evolution of perigee argument,
Al - evolution of mean anomaly.
To calculate eccentricity using known a and g we have:

e2 (2a - r, - r2')2 + (r2:n)2 (29)

Denoting as f vector f, turned for the angle AQ, we have the formula:

0 = (Xlý2 - i 2yM) (30)
(V=Y(( z- 92Z1 )2 + (X1 Z2 - iZ) 2 + (XIý 2 - i2M )2) ) (

where

2= cos (AQ)X 2 + sin (AQ)y 2  (
9= Cos (AQ)y 2 - Sin (AQ)X2. (

Taking into account evolution of perigee argument we obtain for the
angle between position vectors fl, r2 :

2f = 02 - 01 + AW. (32)

Thus we have the formula:

S= /2rr 2[1 + cos (2f - Aw)1, (33)
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where:

2f = arcsin (X1Y2 0 iY1) (34)

Finally, Kepler's equation with account of mean anomaly evolution 1
takes the form:

•y/(t - t1) = 2g - sin2g + Ka- 1 sing + Al. (35)

2.3 Procedure

The main equation (24) is the same as for Keplerian case.
The algorithm for solving it also does not change, but instead of

equation (23) equation (35) is used.
Accomplishment is caused by variating coefficient K and additional

term in equation (35).
Let for certain iteration of equation (24) new approximations for a, g

are obtained. Then determination of K, Al is performed in the following
succession.

1. Determine e using formula (29).
2. Solve equation (30) by iterations and determine 0.
3. Using (26), (27), (28) determine orbital evolution.
4. According to (33), (34) determine i.
After these calculations we can proceed to determination of next

approximation for equation (24).

3 Findings

Classical methods do not take into account specific features of data
used for orbit determination in Russian Space Surveillance Center.

Rough components of position vectors do not allow to use the
algorithms, based on Lambert problem and require employment of more
sophisticated techniques.
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The first part of the paper demonstrates that for extensive class of
boundary conditions theproblem can be reduced to solving the system of
two non-linear equations.

This reduction can be done in various ways and presented study leads
to recommendations for the choice of this way. Possibility of further
simplification of the problem is demonstrated for non-symmetrical set of
measured components and for this case one equation, comprising the root
of algebraic equation in its coefficients is obtained to solve the problem.

Computation procedures for solving obtained equations are given
without discussion.

The second part of the paper proposes modification of known Gauss
technique, allowing to determine satellites' orbits using two positions,
distanced for long temporal intervals, accounting of secular evolution of
the orbit.

Fulfilled studies and their results lead to consideration that new,
different from classical and computationally efficient algorithms can be
discovered in the field of orbit determination problems.
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REENTRY TIME DETERMINATION ANALYSIS
FOR "COSMOS-398" AND FSW-1-5

V.Andrewshchenko, G.Batyr, V.Bratchikov,
V.Dicky, S.Veniaminov, V.Yurasov

SRC "Kosmos", Moscow

1. INTRODUCTION

Of late the Russian Space Surveillance System (RSSS) regularly cooperated
with foreign space centers on monitoring tpace objects nearing the end of their
orbiting. The last two such works were carried out in Nov.-Dec. 1995 and Feb.-Mar.
1996, on "Cosmos-398" and Chinese descent capsule FSW-1-5 respectively.

The "Cosmos-398" payload represented the Lunar Lander (1970-1974)
designed to deliver a single cosmonaut to the lunar surface. After the launch in 1971
and the failure of the rocket program there emerged 5 fragments 4 of which burnt
the same year.

The 5th fragment left in orbit consisted of the habitable pressure cabin with
motors and the instrument compartment, having the total mass about 2000 kg and
overall dimensions approximately 2.5m x 4m. The heat-proof mass made up less
than 5% of the total mass.

The fragment was cataloged by both the RSSS and the US SSN (international
number 71-016H), and the both systems had been continually tracking it since the
launch on 26 Feb. 1971 till its reentry on 10 Dec. 1995.

FSW-1-5 ("China-40") was launched on 8 Oct. 1993 into 200km x 400km
orbit (incl. 57 deg.). Of the 8 launch generated fragments 7 burnt the same October.
The 8th one was a descent capsule (international number 93-063H) protected by a
heat-proof shield, shaped like a cone approximately 1.3m x 1.7m, and had more
than 500 kg estimated mass.

It should have been retrieved after 7-10 days of flight, but the failure of boost
command put it into a highly elliptical 200kmn x 3000krn orbit and let it exist till 12
Mar. 1996.

The SRC "Kosmos", having coordinated this work from Russian side
together with Russian Space Agency, cooperated with the US SSC (via Kaman
Sciences Corporation), Johnson Space Center, ESOC and other scientific centers.
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The data exchange was regularly accomplished through the e-mail. We transmitted
the data to NASDA and CNES as well.

The only sources of real measurements were the RSSS and the US SSN.
These two systems not merely duplicate each other but they are profitably
complementary. For example, the last day of "Cosmos 398" orbital existance the
satellite was out of visibility of Russian radars during the 7 consecutive revolutions
45039-45045 and was tracked only by the US SSN. But the most essential for
reentry prediction last two revolutions (45046 and 45047) were seen only by the
RSSS facilities.

All the measurements were processed by the RSSS , the US SSN, SRC
"Kosmos", Russian Mission Control Center, ESOC, Kaman Sciences Corporation,
JSC, NASDA, CNES, FGAN, Braunschweig University and other scientific centers.

2.THE RESULTS OF MONITORING "COSMOS 398"
REENTRY

Table 1 contains the "Cosmos-398" orbit determination data on the base of
the RSSS measurements for the last two days of its orbital existance. Every day the
orbit was updated at 6 or 7 revolutions. The last update was at 45046 revolution -
one before the last. The last measurement was obtained about 20:00 GMT 10/12/95
at the 45047th revolution less than an hour before the reentry.

Alongside of the RSSS, only the US SSN tracked "Cosmos-398". For the last
two days the US SSN transmitted us the element sets (TLE) at 8 different
revolutions, recalculation of them into the Keplerian elements being presented in
Table 2. The difference between Russian and American numeration systems
accounts for discrepancy of the revolution numbers. So further on we will keep the
RSSS numeration system.

The orbit and reentry time determination accuracy essentially depends on
atmosphere perturbations due to short wave and corpuscular solar radiation. In
atmosphere models these perturbations are taken into account via solar (F10.7) and
geomagnetic (Kp) indices. Daily averaged meanings of them since 1 Dec. 1995 to
12 Mar. 1996 are depicted at Figs. 1 and 2.

Since 1 to 10 Dec.1995 solar index variations were between 72.7 and 74.1.
The geomagnetic activity level was rather low as well and till 8 Dec. had a trend to
lowering (from 3 through 0.5). So at the end of orbital existance of "Cosmos-398"
the solar and geomagnetic situation was rather still and its level was low enough.

The reentry time and site determination was carried out at RSSS and US SSN
independently in their regular modes after every orbit update, each on the base of its
own measurement information. ESOC, Russian Mission Control Center (RMCC)
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and SRC "Kosmos" solved this task on one's own with the help of their own
algorithms and programs and available information sources (ESOC and SRC
"Kosmos" used the Russian and the US SSN element sets while RMCC - only the
former).

The correlation of "Cosmos-398" reentry time estimates from different
Centers and based on diffemet initial data can be seen from Table 3. Its first
column contains the last revolution number on which updated elements were used
for calculation of the appropriate estimate. In the 2nd column the "author" of
estimate is indicated, and in the 3d - the source of tracking data. The predicted
reentry windows (if any) and expected reentry times are given in the 4th, 5th and
6th columns. The 7th column shows absolute residuals of estimates, the assumed
standard being 20:40 GMT 10 Dec. 1995. In the 8th column there are prediction
time intervals, and in the 9th - the relative errors of reentry time determination (as
percents of the time remainder to reentry).

Fig.3 illustrates the data of Table 3. For every organization (except RMCC)
which carried on calculations, it presents the deviations of reentry time estimates
depending on the flight time remainder. For comparison there is shown the 10%
level of error.

3.THE RESULTS OF MONITORING FSW-1-5 REENTRY

The FSW-1-5 orbit was updated daily in the RSSS at every of 9 revolutions.
The results of its orbit determination for the last 2 days of its flight are given in
Table 4. The last updating was conducted at the revolution number 11870 - 5
revolutions before its reentry. (After that the capsule was out of visibility of
Russian radars.)

Table 5 presents the results of FSW-1-5 orbit determination at the US SSN.
The condition of tracking "Cosmos-398" and FSW-1-5 were very alike: the

both orbits were eccentric, the solar and geomagnetic activity levels were rather low
for the both satellites. However, for the last one the atmosphere perturbation was a
little higher: since 1 till 9 Mar. the solar index decreased from 71.9 to 67.5 and then
increased to 73.2 12 Mar. (see Fig.l); since 7 till 11 Mar. Kp increased from 0.5 to
3.8 (see Fig.2).

Table 6 and Fig.4 present comparative estimates of reentry time
determination for FSW-1-5, obtained by different organizations on the base of
different initial data, 04:05 UTC 12 Mar. 1996 being assumed the real reentry time.
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This paper deals predominantly with ballistic aspects of the works above.
However, alongside of processing the measurements of motion parameters during
tracking FSW-1-5, analysis of radar cross-section signatures was conducted for
getting estimates of the design parameters and the attitude dynamics character. As
the result it was settled that since Oct. 1993 through Feb.1996 FSW-1-5 was
destabilized and kept precession motion with variable period. The further analysis
could perhaps clarify the observed leap of the FSW-1-5 ballistic coefficient early
Feb. 1996 (approximately by 10%). This work is now under way, and a paper with
detailed analysis of the signatures is being prepared.

4. FINJINGS

1. Almost all the reentry time determination errors by different
organizatons having taken part in the works on "Cosmos-398" and FSW-1-5
did not exceed the 10% level, which conforms to the accuracy of the
atmosphere models used for quiet and moderately perturbed helio-
geomagnetic situation.

2. For the last days of flight of the both satellites the relative errors of
reentry time determination (except 1 or 2 last revolutions) did not basically
exceed 5-6% level. At the very last revolutions the errors were about 10-22%.
The aposteriori analysis conducted at "Kosmos" Center has shown that such
high meanings could be accounted for by low accuracy of GOST 25645.115-
84 atmosphere model at altitudes less than 150 km. Particularly, recalculation
of the same estimates with the help of CIRA-86 model has lowered the errors
to 3.9% for "Cosmos-398" and to 10% for FSW-1-5.

3. The large errors for FSW-1-5 at the very last interval of its flight seem
to be accounted for by either the observed increase of solar and geomagnetic
activity level, or by possible springing of the on-board active (explosive) sets,
or by possible uncertainty of knowledge of the real reentry time.

4. International cooperation on monitoring the reentry stage of non-
cooperative SO flight is very important from the point of view of both
increasing the reentry time determination accuracy, and correlation and
agreement of models, algorithms, programs and techniques used.
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Figure 1. Solar indices
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Figure 2. Geomagnetic indices
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GEOSTATIONARY ORBIT DETERMINATION AND PREDICTION

V. Yurasov, A. Moscovsky

SRC "Kosmos", Moscow

1. INTRODUCTION

Presently, fast growth of GEO population is observed. The geostationary
orbits are widely used for meteorological surveillance, communication,
telebroadcasting, monitoring and control of ground-based and space
activities. The rate of space object population growth on these orbits are
much higher, than on low orbits: annually the population on geostationary
orbits grows on the average by 30-35 objects, that equals about 7 % of their
total number (Figure 1). From new launched SO about 60 % are active. This
tendency is explained by that many of functions having been realized earlier
on low orbits are transfered now to GEO.

Now there are more than 600 large SO on geostationary orbits, from
them more than 200 being active. The inclination and longitude distributions
of geostationary SO are given in Figure 2. It is known, that the passive
geostationary orbit planes gradually deviate from the equatorial plane up to
15 degrees. In Figure 2 early launched SO population is looked very well. It
is objects with none-zero inclinations. At the same time the significant part of
catalogued GEO has inclinations close to zero. It is active and recently
launched space. objects. All these objects are in the one orbit plane. It can be
seen, that some longitude ranges are closely populated: mutual angular
distance between some satellites in these ranges is equal less than one of
tenth degree already. It is known, that the lifetime of geostationary SO is not
limited. Therefore it is necessary to expect in future even more dense SO
distribution in this area of space. It complicates and will complicate the
solution of geostationary orbit determination and prediction problems.

The Russian SSS in comparison with US SSN has more limited
opportunities for surveillance of GEO. The geostationary space objects
monitoring in Russia are carried out by the optical and optical-electronic
sensors. They are a located on the territory of the former USSR. The
locations of these sensors are given in Figure 3. In Russia it is Zvenigorod,
Zelenchuk, Kourovka and Irkutsk, on Ukraine - Ughgorod and Simeiz, in
Kazakhstan - Alma-Ata, in Georgia - Abastumani, in Tadjikistan - Dushanbe,
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in Turkmenia - Ashgabad. The accuracy of optical measurements of ground
optical network sensors is sufficient high. The errors of individual
measurements for the majority of sensors are -equal to several angular
seconds.

The characteristic property of RSSS is that in observation of the
geostationary satellites large breaks are possible.

First, it is caused by the ground optical network sensors opportunities
limitation. Figure 4 shows the controllable by each of sensor geographical
longitude ranges. The ground optical network sensors can observe the
geostationary satellites, being in a range of geographical longitudes from 30
degrees of western longitude up to 160 degrees of east longitude. Figure 5
shows the longitude drift distribution of 485 catalogued geostationary space
objects. About 20 % of the geostationary satellites have drift more than 1
degree per day. These satellites during long time (a few months) can be in
uncontrollable by Russian ground optical network longitudes area.

Secondly, the breaks in observation of geostationary space objects are
may be caused by a unregularity of work of ground optical network sensors
because of financial and political problems, connected with the USSR
disintegration.

Urgent in this connection a problem of the passive geostationary
satellites orbit determination on precision optical measurements distributed on
large temporary intervals and long-time prediction of their motion is
represented. In the given report some results of SRC "Kosmos" researches in
in this direction are considered.

We shall consider in brief some questions connected to the decision of
this problem. They are following:

e choice of optimum spatial coordinate system for GEO orbit
determination and prediction and orbit estimation vector choice;

e the statistical method for the orbit determination choice;
9 the account of non-uniformity of rotation of the Earth (correction

between Universal Time UTI and Universal Coordinated Time UTC);
* the geostationary satellite motion model choice.
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2. COORDINATE SYSTEM AND TIME

For coordinate information processing in the. RSSS, as a rule, is used
coordinate system Oxyz, in which the axis Ox is directed to the mean equinox
of current epoch t, the axis Oz is directed to the pole, and the axis Oy
supplements system up to right. However, this system is not suitable for
construction of the long-time precision analytical and semi - analytical
satellite prediction theories because of terms caused by a precession and a
nutation by its use. More preferable in this relation is the quasi-inertial system
Oxcoz•, offered originally by Veis [1,2] and recommended according to RD-
50-25645.325-89 [3] as basic for the satellite ballistic maintenance. This
system is connected to the equinox of epoch T, and equator on the
observation time moment. In this system the axis Ox, lays in the true equator
plane of the current epoch t. It is directed to the point 7, which is deviated to
the east from the true equinox yr. on a angle, equal to the sum of a
precession in right ascention for the time interval between the epoch T, and
the epoch t and a nutation in right ascention in the epoch t. The axis Oz,, is
directed on the instant Earth rotation axis of the to epoch t in the direction of
Northern pole. The axis Oy6 supplements system up to right.

It is necessary to note two moment concerning the above coordinate
system:

1) noninertial of this system results to insignificant short-periodical
perturbations in the SO motion theory;

2) the sideral time, which connects this system with Greenvich system, is
linear function of Universal Time UT1.

Taking into account these aurguments, quasi-inertial system of
coordinates Ox",aZ, was chosen as the basic coordinate system for
geostationary space objects orbit determination and prediction on large
temporary intervals.

By time unit accepted for registration of all time-dependent events and
also independent variable at orbit determination in the RSSS is UTC
(Universal Coordinated Time). In optical observations the direction "observer
- satellite on a background of stars" is in essence fixed. For calculation of this
direction it is necessary to know Universal Time UTI connected with the
Earth rotation.

The corrections DUTI=UT1-UTC are transferred now by radio signals
and are published in the bulletins by International Earth Rotation Service
(IERS). However, at orbit determination of LEO these corrections are not
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taken into account. At processing optical measurements on the geostationary
satellites allocated on a large measure interval it is inadmissible. This can
result in deterioration of orbit determination results because of arising errors
which can be comparable or to surpass in some times measurement errors.
Especially it can be displayed'in a case, when on the measure interval there is
the jump of Universal Coordinated Time UTC.

3. ORBIT ELEMENTS ESTIMATION AND MOTION MODEL
CHOICE

For an orbit parameters estimation the least squares method with a
consecutive rejection of abnormal measurements was chosen. If the measure
interval is small gravitational perturbations influences are taken into account
only and six elements of orbits are estimated. As estimation parameters the
following system of nonsingular at small inclinations and eccentricities
elements was chosen:

X = (a,ý,ril, P,aQ,A),

where a is axis,
ý = ecosnr, q = esinnr,
P = sinfcos!. Q = sinsin., (1)
A. = cv+!i)+M,

I= C9 + R)
i - inclination,
co - argument of perigee,

- longitude of ascending node,
M - mean anomaly.

For matrixes (transitive matrixes) '6 X (t calculation analytical

formulas were used. At large intervals perturbations due to solar pressure are
taken into account and the ratio of the satellite surface area (S) to its mass (mi)
is included to the estimation parameters. The transitive matrixes terms due to
solar pressure are calculated numerically.

It is known, that the coordinate information processing quality depends
on the characteristics of used SO motion model. In ideal variant the SO
motion model used at the measurement processing should not bring an
additional errors into orbit determination. In this connection the desire to
maximize the measurement processing interval conflicts with the above
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requirement.
For geostationary SO motion prediction the universal semi-analytical

method [4] was used. The perturbations due to geopotential, including
resonance perturbations, attraction of the Moon, Sun and solar pressure are
taken into account. The methodical errors of the used semi-analytical method
were estimated by the comparison with the results of numerical integration of
the satellite motion equations. The maximum differences on fifty days
prediction interval between results of the numerical and semi-analytical
solution on radial and binormal directions are estimated as 40 m, along the
track - 600 m. The analysis has shown that the deviations along the track
have secular character and are connected with the transition from osculating
to averaged elements in the semi-analytical method. At processing real
measurements this coordination comes as a rule automatically.

4. ORBIT DETERMINATION AND PREDICTION RESULTS

We shall consider results of 69 real geostationary space objects orbit
determination, based on processing of the optical information distributed on a
large temporary interval.

In Table 1 the characteristics of the chosen satellites are presented. For
each satellite in the first column is its number in the catalogue (number,
smaller 30000, coincide with numbering in the US SSN catalogue), in second
- international number, in third - name, in fourth - measure interval for the
orbit determination, in fifth - RMS of residuals, appropriate to results of orbit
determination on measurements, in sixth - number of measurements, in
seventh - period, in eighth - inclination of an orbit.

Distribution histograms of periods, inclinations, intervals of orbit
determination, number of measurements and RMS of residuals corresponding
to the data of Table 1 are given in Figures 6-10. It is visible, that the
selected realizations cover practically whole area of geostationary orbits. The
measure intervals at orbit determination for the chosen satellites were in a
range from 1 till 9 months. The minimum number of measurements was
equalled 7, maximum - 54. The RMS of O-C residuals for the majority of
orbits do not exceed 12 angular seconds.

For eight of given in Table 1 satellites, international numbers of which
are labelled by asterisks, ephemeris on moment of new observation of these
satellites were calculated. The maximum of ephemeris calculation interval
reached two months. The residuals between observed and calculated values

141



C) RI t ---- C) r- r 10 "

.04 Oici 0 cf 4 06 OW

.- 4

ONO t, Nw mO

H4V4" t.Cm0.Q . . .100

-o N qN M C4M en C,

00

zEooý00 )q 0qý
Ql en H nti406() ~

00 0t 00 4 C4 00 00N 00 00C,-() -

C>- 00 C -C> > N CA % r-C) 00 r-

-4C142



Os- m W C)m t " \D " -'- \D0- ,
%, 40 ý a ) 3 4 z

zs

-ý N ýc r~- WN 0t-CDW C(

M "o I- M M m -m -:t_ ItI ,tI
_ _-_- - - V4 V4 r4 V- V 4 r- " r- - 4 -1 r 4

\o t C\ r- CN ON OQQ
V--4 On QN C'4 T4 v ..

z E'ai0 Q

N C14143



ýO - A O Id, ':t00IM00-

C14 C-4 '-

Cfs~

%6 r- cli4 - C-4 vi -: 60 -ý t- 0 r

0

m m ON

zE
ft 0 w 0N w --- -OV:-- 1 10

0 w ONO0000OmQ\Cr erl- m

cd

m 144



kn 0C N N N "~ W ttV)Q

t-4.

. t ýt--,t t -,t-tt-ý-r-Tt"

o ~ - V ~ -4 - "-4- V- ~~~-4

00' W W kn o
V-4 V- --4V- -4 - r4 % V-

C/) N CýCý ci 06ý6 44 4 ý Cf

m 0m ý NI 0W 1 X %

cd

z

CI)

-. 0 V-4 VI V--f -44--4 -4

145



*4 4

ot
o E

0 --

300

* ,0

ILo 0 In 0 6 0~0
C4' C4 ,- -. a- W 0 ID

2914HOWSPJ ON=
SB~IlbQPS JO ON

~~0

(N

* C4

.. 2*V

P ON

146



(D

a 0 0 __ U

0 0 0

0 1 a 00

IU 
-T a0

.-- ! 0 0C

0 a

cl D
00 0

0 .0

Ui

Ooa 00a 
C'

00

0 
C0

000

-F 

0

00

o0
_ 000

U, 00

60 a

0 000 0

~~~~n~~ 0 o a ~ 0 0 C

1.47



of right ascention and declination are presented on Figure 11. The ephemeris
errors on an interval till 60 days have not exceeded 30 arc second for the
majority orbits. These accuracies are coordinated with the calculation
ephemeris errors and they are sufficient for search, detection and
identification of the geostationary satellites by optical sensors.

Orbits of 55 satellites from Table 1 were predicted to the moments of
their updating by US SSN. Total prediction number was 829, that was 15
predictions for each of the satellites on the average. The prediction intervals
laid in the range from 0 till 650 days. Figure 12 shows differences between
predicted and updated satellites position along the track. In this Figure the
negative values of the prediction interval correspond to the orbit
determination on optical measurements interval. Figure 13 shows the
distribution of these deviations. It is close to the normal with mean equal
zero and RMS equal 0.1 degrees. From these data it can be seen that:

"* the errors behaviour on a measure interval not differs from one on
the prediction interval;

"* the maximum errors on 650 daily prediction intervals do not exceed
practically 0.3 degrees, the RMS of errors equal 0.1 degree;

"* with increase of the prediction interval the common tendency of
errors growth is observed though for the separate satellites an error
can decrease.

The average level of errors is greater than expected one. Therefore the
more detailed analysis of received results is required. In particular, one of the
reasons of this may be that at calculation of osculating elements on TLE long-
period perturbations due to resonance harmonics and also attraction of the
Moon and Sun were not taken into account.

Nevertheless- these results opens new opportunities in passive
geostationary SO maintenance in conditions of the measurement deficit and
large breaks in their observation.

Now in SRC "Kosmos" is formed archival database of the passive
geostationary satellites observation. This database represents large interest as
for the solution of geostationary satellites surveillance problem as for
realization of fundamental researches.
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INTRODUCTION

For the solution of many practical problems, connected with the ephemeris
providing of observations of geostationary satellites (GS), it is -necessary to have a
rather simple and precise motion theory of these objects.

Because of remoteness of GS from both the centers of the Earth and the Moon, the
short-period perturbations cause weak changes of orbital elements which do not
exceed 1'. Therefore it is preferable to construct the long-period motion theory, which
should be also used as an intermediate orbit.

In our paper the resonant perturbations have been taken into account with the
method, elaborated by Gedeon [1]. The introduction of the Laplacian plane [2] as
fundamental one allowed to linearize Lagrange's equations with the luni-solar
attraction function, because of a small change of the inclination i, and the linear
changes of the longitude of node n and argument perigee Co. Here and further the
orbital elements are referred to the Laplacian plane.

The developed theory and software were applied to the investigation of orbital
evolution of GS at the long term intervals up to 10000 days and for improving their
orbits, published in Catalogs [3-5]. The errors in GS positions as a rule do not exceed
10'. One year of orbital evolution is calculated in 2 4 sec with PC - 386, depending
on type of motion: libration or circulation.

THE BASIC EQUATIONS

In this investigation the following co-ordinate system has been adopted. Its origin
is in the center of the Earth's mass. The fundamental plane coincides with the
Laplacian prane, "which crosses the equatorial and ecliptic planes. This plane forms
with the equatorial one a dihedral angle A (7020'). The X-axis is directed toward the
mean vernal equinox of the date and Z-axis is perpendicular to the Laplace plane.
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The principal difficulty of construction of GS motion theory consists in taking into
account of resonant perturbations from the geopotential.. These perturbations cause the
largest variations in the stroboscopic longitude X = M + co + n - S, where M - mean
anomaly, S - Greenwich siderial time.

The modified Gedeon's equation for X, which includes the influence of resonant
harmonics of geopotential and the luni-solar attraction [6] is written as:

dt2 = _n Z.AL.,,,, sin(mA, - naLt,• + (k - ra)C'I ) + LSP ,(1d(1)

where n - mean motion of GS, coefficients Ankq - depend on the Hansen coefficients,
the inclination functions [7], parameters of the geopotential (C,+ S1M) and on the
relation of semi-major axis of GS orbit to the Earth's mean equatorial radius; LSP
denotes the luni-solar perturbations.

Here the summation is fulfilled on resonant harmonics, when indexes 1, m, p, q
satisfy the following equality:

I- 2p + q=m. (2)

INTEGRATION OF MOTION EQUATIONS

For the simplification of the further statement let us rewrite equation (1) as follows:

dt 2

-=~ i~Av-sf1)+LSP, (3)

where

A, = -n 2 AL%,k

0 , =AM&,pq,,, (4)
$t =m-k.

Choosing of the Laplacian plane as the reference one provides very slow changing
with respect to time (almost constancy) of coefficients A1, mi, Vi and si in (3).

If these coefficients and longitude of node 9 were constant, - in the case of
absence of the luni-solar perturbations, - equation (3) would have the first integral:

ý d•2CI() (5)
kdtL"

where C is the constant of integration, which is the analogue of Jacobi's constant in the
restricted problem of three bodies, and

[(A) = 2z."cos(m,2 -P, - sP). (6)

In such case the problem could be resolved by means of quadrature:

- to - () (7)
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The behavior of function 1(X) is shown on Fig. 1. It is like to asymmetric sinusoid
with two maxima of different heights. Accordingly to the value of parameter C in (5),
GS may move in one of pits - simple libration near the stable point 750 E or 1050 W,
around both of these pits - complex libration or in the circulation regime.

4.00E-5 C

3.OOE-5

2.OOE-5

1.OOE-5

0.00E+0

-1.00E-5

-2.00E-5

-3.00E-5 
-

4.00E-5 I I I

-195.00 -145.00 -95.00 -45.00 5.00 55.00 105.00 155.00

Fig. 1. Function 1n(,).

However, because of smallness of i2, the solution of (3) may be still expressed in
form (5), if we consider C as a slowly changing function of the time.

As a result we shall have:

dC Aisd= 2 -iA sin(mA. - qP - sQ). (8)
dt m,

Introducing the new variable of integration dX instead of dt by means of (5), we
obtain:

' A osin(mA2 - ,-s)C = Co + 2ý2f m, da. (9)

The exact calculation of the right-hand side of equation (9) is impossible, because
variables C and 0i2 have been unknowably depended on X; but with accuracy, enough
for practical applications on short intervals of time, we may consider them as
constants, equals to the middle values of U and U, accordingly.

The variations of C and inexactitude in calculation of (7), connected with changing
of n2 with the time, we can considerable reduce, introducing the oscillating system of
co-ordinates, where the new variable Xis determined by equation:

X = 2 + 0.00821sin(f2- 0.0176)+ .O0007sin(2Q- 0.0362). (10)
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The introduction of variable Xhas the.following geometrical sense. The tops of the
fimction 1(X,) (fig. 1) are periodically shifling relative to their middle positions,
accordingly to changing of n with the time. So, we receive the system of co-ordinates,
oscillating synchronously with the tops of function f-().

This allows to increase the step of integration without the waste of accuracy.

CALCULATION OF QUADRATURES

The calculation of quadrature (7),- substituting X instead of X, - may be realized by
means of the numerical methods.

However, using of (7) for resonant GS is connected with some problems, because
near the points of reverse the integrand becomes unlimited. Hence, the accurate
calculations require very high range (many thousands) of approximating polynomial.

For this. reason we have introduced in (7) a new variable of integration (0,
connected with X as follows:

X = ((A -B)sin 0 + A + B)/ 2, (1

where A and B are some constants.
With the new variable (0 the equation (7) becomes:

t-to=A-B (12)

-~~~9 0c = 2 C (X) (2

We can choose constants A and B so, that in (12) the roots of cospo and C - I71(X)
would coincide and at these points integrand becomes limited.

If one makes integration of (7) with the constant step of X, to the end of every half-
period of librating GS the value of At must strongly grow, because at these points the
derivative dX/dt tends to zero.

For obtaining of nearly equal intervals of time we use some method for choosing of
step X, called as subroutine "Metka".

APPLICATIONS

Basing on the described mathematical method, the software for GS orbital
calculations is elaborated. This software consist of two groups of procedures, which
are called as "Evolution" and "Improvement".

The simplest one among them is the group of "Evolution", by means of which we
may to investigate the evolution of GS orbital elements during tens of years, based on
some initial conditions. The rate of calculation for one year of evolution with PC IBM-
386 is equal to 2-4 sec. The accuracy of GS positions for 5 years of evolution is equal
to some seconds of arc for ordinary GS and about a half minute for the GS, changing
their moving regime; for 60-year evolution these errors grow to some minutes of arc or
one degree, accordingly.
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The another group of procedures permits to improve GS orbital elements by means
of least square method, using all observations (made after the moment of last orbital
correction).

Due to this software it is possible to calculate GS ephemerides for many years with
the accuracy, enough for their identification and observation. It is also possible the
identification of "old" GS, which were lost. By means of discrepancies in motion of
some GS, moving on unstable orbits, it is possible to improve some low-order
harmonics of the geopotential. For this purpose we have chosen 14 of such GS and
their observational program "Resonance" have been created.

3.35E-5 C

3.30E-5

3.25E-5

3.20E-5
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315E-5 -

I I I
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Fig 2. The C-parameter of 67001A and the "top" of -I(k).
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Fig 3. The C-parameter of 86027A and the "top" of I-I(X).
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On Fig. 2 and 3 there are shown the results of the long-period investigation of GS
67001A (Intelsat 2 f-2) and 86027A (Cosmos 1738) orbits. On these figures the values
of C-parameter of GS (5) and the "tops" of potential hills, as functions of the time, are
shown. The scale of time is about 60 years.

It is clear from Fig. 2 and 3 that the "tops" of potential function I-I(X) are
periodically moving up and down with the 54-year period. It is also shown, that both
of these GS change their regime of motion: in 1974 GS 67001A from librating orbit
had been passed to the circular one and in 1997 or 2000 GS 86027A will change the
simple libration with the complex one.
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LOW-PERIGEE SATELLITE CATALOG MAINTENANCE:
ISSUES OF METHODOLOGY

Z.N.Khutorovsky
"Vympel" International Corporation, Moscow

In Russia the main source of information on orbital and ballistic
characteristics of man-made Earth satellites is the catalog of these objects,
maintained by the Space Surveillance System [Ref.1].

Maintenance of this catalog is performed in real-time scale by complex
automatic system, which includes network of sensors and software tools
for processing acquired data in automatic and interactive modes.

General composition and characteristics of this system with regard
to satellites in low orbits were described in [Ref.2]. Here we will treat
the architecture of the algorithms, forming the basis of the system. Our
attention will be concentrated mainly not on the algorithms by themselves,
but on the basic initial conditions and assumptions for their development,
key methodological notions, character of the main tasks to be solved and
considerations of principal possibilities to find necessary solutions.

Presented analysis is concluded by brief 'characterization of the main
specific features of the algorithms employed in Russian Space Surveillance
System for satellite catalog maintenance.

1. SENSORS

The main source of data for solving the task of satellites' catalogization
are detection radars of the Early Warning and BMD systems. Certain
characteristics of these sensors are, presented in table 1 ([Refs.3,4]).

Note the main specific features of this network.

1. All sensors work in detection mo4e i.e. continiously observe the
space within their fields of view and receive reflected signals, exceeding the
threshold level, which form single measurements. Scanning is performed
by each radar according to certain fixed programm. It means that on-site
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detection process is not under the control of the Center, responsible for
catalog maintenance.

Table 1. Characteristics of the sensors

location coordinates type system sector band
in azimuth

Irkutsk, Russia 103 0W, 53°N Dnepr EWS 300+3000 VHF
Balkhash, Kazakh. 74°W, 45°N Dnepr EWS 300÷330' VHF
Murmansk, Russia 40'W, 680N Dnepr EWS 2950÷3550 VHF

Riga, Latvia 22 0W, 57 0N Dnepr EWS 2200+3100 VHF
Sevastopol, Ukraine 33 0W, 44 0N Dnepr EWS 1400-2600 VHF
Uhzgorod, Ukraine 23°W, 48°N Dnepr EWS 165°÷285' VHF
Petchora, Russia 57 0W, 65 0N Darial EWS 3000 +00 VHF

0 -550
Mingechaur, Azerb. 48 0W, 41°N Darial EWS 1050-2150 VHF

Moscow, Russia 37 0W, 55 0N Dunai BMD 2550±3050 UHF
I__ I__1 __ 1 650+1200 ° _ _

2. All the sensors are located within the territory of the former USSR
in boundary and central regions. Their geographic locations cover 12%
of latitude and 22% of longigude ranges and sectors of view are limited
in azimuth, elevation angle and range. Thus complete surveillance of low-
perigee satellites is not ensured. Maximal gaps in observations of low orbit
objects of meter size, moving in circular orbits with inclinations exceeding
300, are 12 hours a day (Ref.1].

3. Only one of the sensors (Dunai radar, located in Moscow region) is a
UHF radar, the others are VHF radars. Observation conditions for objects
with sizes less than 20-30 cm 1 are essentially different for UHF and VHF
radars. Some of these satellites canbe observed only by UHF radars. Thus,
satellites, observed by only one sensor, do exist. In this case the range of
latitude arguments u of observed parts of the orbit does not exceed 50+70,
i.e. covers 1.5+2% of the range of u. If observation conditions do not let

'The US satellite catalog comprises more than 2000 such objects.
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the radar observe the satellite in ascending and descending revolutions,
the total range of observed latitude arguments bUto, may deviate from this
value insignificantly.

2. MEASUREMENTS

Performing a set of single observations of the target the radar obtains
the "marks" - single measurements of certain parameters along the
track of a satellite. Usually a radar measures range D , azimuth e , elevation
angle 7 and sometimes radial velocity D in local radar's coordinate system
[Ref.5].

Acquired single measurements are "smoothed" for the interval tt,
(ttr<50÷100.s [Ref.1]), producing as a result estimation of object's
parameters or measurement (observation) x = (D , y, D,, g, I').

Any radar measurement x contains data on orbital parameters a of the
satellite, that produced it, since

x = f(a) + bx, (1)

where f(a) - functional relationship between orbital parameters and
parameters of the measurement, 6x - observation's error.

Design of measurements' processing procedures most essentially
depends on the accepted model of measurements' errors. The following
model is used to describe real errors.

1. The value 6x is presented as

S= SX nor + 5xan, (2)

where SXnor and 6 Xan - are normal and abnormal components
respectively.

2. Normal component 6Xnor is present in each radar parameter of vector
x. It has Gaussian distribution with the mean m and diagonal covariation
matrix K. Parameters m and K satisfy the conditions m < mma, K <
Krax•

3.Abnormal component SXan satisfies the conditions
6Xan»>>Xnor, I6xaI<56x,ý. It is present only with certain probability

Pan<l (Pan= (PD,Pe,P7,Pb,P6,Pi')).
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Real errors well correspond to this model. The model parameters
mmax, Kraxa, 6Xmax were managed to be chosen so that the resulting error
does not exceed 0.001, i.e. 99.9% of observations have errors, corresponding
to accepted model. In this case

a) probability of abnormal error in any of "radar" components does
not exceed 0.1 as a rule;

b) 21 combinations (out of 64 possible) of the six-dimensional vector x
components can be abnormal simultaneuosly;

c) the number of abnormal components is not more than three.
Regarding the magnitudes of observation errors the following can be

mentioned.
1. Different parameters are not equally accurate. The most accurate is

the range. Errors in azimuth and elevation angle (transformed to linear
measure) are as a rule much greater. Similar ralationship is valid for
velocity components.

2. Probabilities of arrival of abnormal errors are different for different
parameters. The most consistent is the range. The least accurate
components - elevation angle and its rate are subjected to distortions to
the most great extent.

3. Among six orbital parameters three are determined most accurately
on the basis of measurement: orbital inclination i, longitude of ascending
node Q and orbital period T. Approximate ralationships for the errors
Ni, 7Q, 6T of i, Q , T determination are as follows 2:

6i {degree} -, 0.75.10- 2.D.-SDol + 0.6(D.SD + 0.008.D.jSDo0 ). cos u
8Qf {degree} , 0.75.10- 2 .D. ISDoI + O.6(D.6b +O.O8.D.jSDoJ). sinu. sini (3)

ST {minute} l 6.D.Sb + 3.D.SD + 0.025.D.IJD01,

where u - argument of latitude for the point in orbit, in which vicinity
the measurement is fulfilled; i - orbital inclination; iSDo0 - error of

2These evaluations are obtained for satellites with orbital altitudes h < 3000 km and
eccentricities e < 0.1, and also for observed by the radar at ranges D < 2000 km and radiation
directions, deviating from the main (normal to antenna's plane) not more than for 300. Their
derivation uses known geometrical and dinamical relationships [Mef.5], [Ref,6].
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evaluating direction to the object on the basis of measurement (error of
the most roughly measured angular component); 8b - error in determining
acceleration using the range, its upper limit evaluated using either the
formula 6SD = 2.Sb/ttr, in case the radar measures D (SD - maximal
error of single measurements of b not taking into account systematic
component) or using the formula bD = 16.65D/t2r, in case D is not
measured (SD - maximal error of D single measurements, not taking into
account the component, linearly evoluting with time).

It follows from (3) that the magnitude of errors of i, Q, T determination
on the basis of measurement for objects of meter size is 1% of the measured
value, i.e. - 1° in i and 9 and • 1 minute in T.

3. TRACKING

Key aspect is the notion of the trackability of a satellite. This notion
formally is not to be dependent on the radars, since their operation is not
under the control of the Center, maintaining the catalog.

We consider the object trackable, in case it is
a) observable, i.e. its observations are fulfilled regularly;
b) separable, i.e. its observations can be selected on the background of

other measurements.
Thus, tracking of observed satellite is influenced by other also observed

objects.
If the object is trackable, then it is principally possible to determine

its parameters using all attributed observations' data, thus providing
calculation of its position for arbitrary moment (with certain accuracy).

Regular tracking of a satellite means periodically repeating procedures
of correlating new measurements with this satellite and updating its
orbital parameters using these measurements. This will be called tracking
process.

Now we will formulate condition of trackability (tracking) of a satellite.
Its significance requires rather detailed consideration.

Assume, that all the measurements for given object are separated
and on their basis the orbit is determined. Let a new observation x is
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acquired for this object. Than to obtain correct correlation decision this
measurement must be closer to the "own" object than. to the others also
having the orbits determined on the basis of measurements. "Distance"
between the orbit and the measurement is determined by the differences
between the measured and calculated using orbital parameters components
of the observation.

Calculation of measurement's components on the basis of the orbit
means propagation of the elset to the moment of measurement x and
transformation of obtained data to parameters of the measurement.

If all the measurements and propagated elsets were not subjected to
errors, the residuals of measurements with "own" orbits would be equal
to zero and allocation of measurements to the objects won't pose any
problems. Thus the residuals are determined by the errors of measurements
and predicted orbit. Measurements' errors at least for one of measured
parameters are essentially smaller than distances between neighbouring
satellites, otherwise satisfactory selection of single measurements in
course of on-site tracking and acquisition of measurements would
become impossible. Thus, the cause of mistakes in allocation of radar
measurements to orbits of tracked satellites can be only the errors of
predicted orbit.

Orbital parameters for any object are obtained on the basis of the
set of measurements, previously performed on this object by all the
radars, participating in surveillance process. The employed for orbits'
determination algorithms seek for the orbit, in certain sense, best to
"inscribe" into these measurements. To calculate residuals with future
measurements this orbit is propagated to their moments. Thus the errors
of predicted orbit depend on

1. errors of determinating orbital parameters on the basis of
measurements

2. errors of propagating this orbit.
These two sources of errors interact with each other, producing the

error of orbit's determination and prediction.
So, condition of trackability assumes small errors of orbits' determina-

tion and prediction in comparison with distances between them. In other
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terms alien measurements are not to "insribe" into satellite orbit. We will
call it informativity condition.

Let us evaluate accuracy of orbit's determination and prediction, ensu-
ring fulfillment of informativity condition.

On one hand, maximal density of satellites, regularly tracked by US and
Russian sensors, is ;10-7 objects within kM3 [Ref.71, i.e. P1 one satellite
within a volume of 107km 3 , and density variations within altitude range
400-3000 km is three orders of magnitude. On the other hand, uncertainty
domain, resulting from orbit's propagation, has the shape stretched along

* velocity vector, since the error in directions, normal to velocity vector is
approximately e times smaller, where e - orbital eccentricity. For 90% of
tracked satellites e < 0.1. Not taking into account objects with e > 0.1
and assuming that the volume of produced by propagation uncertainty
domain is to be of the order of magnitude smaller than the volume, where
one satellite can be found, we have the following condition for acceptable
along the track prediction error 6v: 0.1.10 7 = (0.1.50).(0.1.60).6v. And
hence 6,;500 km. Transformed to time this is •1 minute along the track
of a satellite. This estimation is obtained for most "populated" altitudes
-800+1000 km and ;1400-1500 km. For other altitudes acceptable errors
are greater.

Let us evaluate how informativity condition is satisfied.
For propagating the orbit for M revolutions the error bv is evaluated

using the formula:

6, = M.6T + 0.5.M 2 .6(AT), (4)

where 6T and b(AT) - errors of determination of orbital period T and its
rate (per revolution) AT.

Understanding of the accuracy of T determination using one measure-
ment is provided by formula (3). As we have mentioned earlier typical
value of 6T is 1 minute. In case we have several measurements, distanced
in general for N revolutions, the upper limit for 6T can be estimated, using
the formula 6T = 2.St5/N, where 6t, - maximal error of determinating
the moment tu of satellite's passing the point with latitude argument
u, calculated using one measurement. Usually the object is observed in
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different revolutions with close latitude argument, thus the value of u can
be chosen, for which bt. is of the order of 1 s.

The value of AT depends on satellite's altitude over the Earth surface h
and its ballistic coeffficient kb. The values of AT (in minutes) can be given
by approximate formula loglolATJ ; logio(ok. ) - -L, where h - altitude in
kin, kb - ballistic coefficient in m2/kg (typical values are e0.01). The value
of AT principally can not be determined as accurately as we desire since
&(AT) is defined by the error of the used model of atmospheric density for
prediction interval, that ranges from several percent up to several times
(typical values are ;.z10%) [8].

Analysis of this situation brings to the following.
1. The orbit, determined using one measurement, allows to track the

object in case it is observed in each revolution. The sensors do not provide
this possibility. Hence estimation of orbital parameters for any satellite
requires to combine the data acquired for different revolutions.

2. The orbit, determined using several measurements for different
revolutions, allows to track satellites observed daily (with h > 300 km
and kb < 1m 2/kg).

3. Observation conditions for satellite in near circular orbit depend
on its altitude h. With increase of h the range of object's pass through
radar's field of view usually increases and observation conditions become
worse. On the other hand with the increase of h prediction errors decrease
and acceptable prediction interval increases. In altitudes greater than 600
km ( and kb < 1m 2/kg) a satellite can be tracked even in case only one
measurement a month is obtained. That is why regularly (however, may
be seldom) observed satellites in near circular orbits can be tracked.

4. In case a satellite is in orbit with eccentricity, that can change
observation conditions for various values of perigee argument, the
measurements on this object may be irregular and long gaps in
observations become possible. In this case tracking of satellite using the
measurements may become impossible and break of tracking occures.
However this situation is temporary. When new data on this satellite arrive
after a long gap, trackability condition for the set of measurements after
the gap may be satisfied and the object principally, may be tracked again.
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Above considerations treated "stationary" situation, when no new
observed objects arrive in space.

Launches, separations, break-ups as well as arrival of new sensors and
modernizations of existing ones also produce disturbances of informativity
condition. Here disturbance of informativity condition is also of local
(only for certain domain of parameters) and temporary (only for limited
intervals) character. After certain time new objects will depart for
significasnt distances and acquired observations will principally allow to
determine their orbits with accuracy, required for tracking.

Here one more important notion is to be introduced. It will be treated
in the next section.

Conclusions follow.

1. Informativity condition is indispensable condition for
tracking a satellite. For observed objects it is normally satisfied.

2. For certain satellites informativity condition may be
disturbed for some intervals. Breaks of tracking may occure in
this case for tracked satellites.

3. In case observations' data on new or not tracked (but
tracked previously) satellite arrive, it .must be stored until
informativity condition is satisfied.

4. PRIMARY DETERMINATION OF ORBITS

We already mentioned that the orbit determined using one measurement
does not ensure satisfactory separation of future observations' data on
this object. To obtain more accurate orbit we are to combine several
measurements. In case the object is tracked this orbit is available. However
its accuracy decreases with time. Therefore it is to be updated' using new
received observations. If the object is not tracked, principally new task is to
be solved - primary determination of the orbit or orbit's detection.

Informativity condition must be satisfied to solve this task. This
condition is satisfied in case the data, present in measurements of this
object, principally allow to determine its orbit with accuracy making
the errors of determination and prediction essentially smaller than the
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distances to other observed objects so that "alien" measurements won't
"inscribe" into the orbit.

For primary determination of orbit two measurements for different
revolutions are not enough, since the chances to take two measurements
produced by two objects are too great 3. We need to have at least three
measurements for three different revolutions (triplet). The orbit determined
using these measurements is much more accurate than the orbit produced
by one measurement and the chances that three measurements inscribed
into one orbit are produced by different objects are essentially smaller than
for two measurements.

In reality for primary determination of orbits we need:
a) to find associating triplet among the measurements, not correlated

to tracked objects;
6) using discovered triplet, determine the orbit.
Let us analyze principal possibilities to solve this task4 .
The main parameter, defining this possibility is the uncertainty in the

number of revolutions N between the boundary (with regard to reference
moments) measurements of the triplet.

Let kud = [N. 'I6tJ < 0.5.(p + q), where ST - the error in period T,
determined using one measurement; [A] - entire of A, rounded-off; p and
q - minimal integer positives, satisfying the condition p/q = P/Q; P - the
number of revolutions between boundary and intermediate measurements,
Q = N - P. Then no uncertainty exists. This condition will be called
unambiguity condition.

When the unambiguity condition is satisfied for the set SN of possible
values of N (taking into account uncertainty coefficient k•,d) 5 the unique
value N exists, when parameters tM1), tP2), t0) are matched (t(1), t(2) t(3)

- calculated using the measurements of the triplet moments of satellite's
3Especially for multi-element launches and break-ups, when the orbits of different elements

are close.
4For the task of primary orbits' determination the computation's aspects are also important,

since decision making procedures are rather time-comsuming. We won't deal with these issues
here. Assume that arbitrary complex procedures are realizable.

5SN = {N + i, i = 0, ±1, 2, ... ,1k.d}, where N = [Its')- t-)lT].
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arrival at a certain latitude argument u for the revolutions, corresponding
to these measurements).

The value N is true number of revolutions between boundary

measurements of the triplet and corresponds to the estimation T of T,
given by T = (41) - t(3)I/N, which accuracy exceeds accuracy of t by 1-2
orders of magnitude.

Consider the example. Let 16TI < 1 minutes and T = 100 minutes.
Then for N < 50 (1t') - tI)I < 3.5 days) kud 0 and =

Unambiguity condition is satisfied irrespectively of relative position of the
intermediate measurement with regard to the boundary ones. Let now
N = 200 (two weeks between boundary measurements) and P = 100.
Then kud = 2, p = q = 1 and unambiguity condition is not satisfied. In
this case SNv = {N - 2,N -1, N,9N +1, +2}, step of uncertainty p+ q is
two (corresponds to the step in period -1 minute) and within the set SN
two or three possible values of N, when t(), t(2), t(3) are matched, do exist.
Each of them correspond to its own estimation T with error 15TI 00.01
minute.

If uncertainty in the number of revolutions between boundary
measurements of the triplet exists several primary orbits can be obtained,
equally well inscribing into the measurements. In this case none of them
can be found preferable and orbits' detection task won't be solved. Solution
may be found some time after arrival of new measurements on the object.
To be successful we need:

a) informativity condition is to be satisfied for the interval of these
observations;

b) additional observations' data is to remove the uncertainty in the
number of revolutions between boundary measurements.

Conclusions.

1. Possibility of solving the task of orbit's detection for certain
satellite depends on its observability.

2. Detection of daily observed satellites is possible in case they
are observed by at least one sensor.

3. Rarely (less than one time a day) observed objects
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principally can be detected provided certain arrangement of
measurements within the interval of observations and fulfillment
of informativity condition.

5. IDENTIFICATION

After primary determination of orbit the origin of detected satellite is
to be determined. This is the task of identification. Obtained orbit (in
case it is enough reliable) may be either the orbit of new satellite, not
previously tracked, or the orbit of the object tracked before, but lost due
to break of informativity condition caused by absence of observations for a
long time. In the first case the sourse of the object is to be determined, for
example launch, break-up or separation. In the second case predecessor is
to be identified.

Let us evaluate the possibilities to solve this task.
Accuracy of identification depends on delay Td = tdet - tin, where tin

- the time of newly detected object arrival in space or the time when
previously tracked satellite was lost; tdet - the time of object's detection
and start of its tracking.

If rd is small, identification with the origin does not pose serious
difficulties, since first, rather complete information on space operations
is published and second, the orbital data allows simple and acurate
determination of satellite's parameters for the moment of its arrival ti" (for
identification task parameters i, Q and spatial position for this moment are
of major interst).

With the increase of Td the error of determination of satellite's
parameters for the moment ti,, increases and we approach the moment,
when correct determination of the origin immediately or after a short time
after detection becomes difficult or impossible.

If detected object is a "prolongation" of the old one, then for making
correct identification decision we need:

a) parameters of detected object "inscribe" into the orbit of the old
one;

b) with regard to objects' parameters the "distance" (taking into
account propagation errors) between the old and detected object is
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essentially smaller than the distance between various previously tracked

satellites.
Computation of this distance is fulfilled propagating parameters of the

old satellite (it is more accurate since it was tracked for longer period )
to the epoch of detected object. Prediction intervals may reach several

years and we are to have prediction procedures good enough for such
intervals. Principally this task is solvable in case old object was tracked
for sufficiently long period and within the interval from its first detection
up to its last loss rather complete pattern of orbital parameters' variations
is available. In this case we can approximate temporal evolution of orbital
elements with fragments of Fourier-Taylor series and perform predictions
for the old object using this approximation. To fulfill these operations
global archive of orbital data for all satellites, for which breaks of
tracking are possible, is needed.

If detected object is not identified with any of the old ones and it can not
be affiliated to recent launches and break-ups, most likely it is a fragment
of one of old launches or break-ups. Possibilities of identification in this
case mostly depends on accuracy of determination of Q for the moment of
assumed arrival (moments of launch or break-up). In its turn this accuracy
is determined by duration of detected object's tracking. Sometimes several
years of tracking are needed to determine the origin and the moment
of satellite's arrival, that took place 20-30 years before the moment of
detection. Here long-term prediction of 0, similar to the cases of objects'
loss, is performed using approximating functions, calculated on the basis
of orbital data for new satellite for the whole interval of its tracking.

Conclusions.

1. To be successful in identification of detected orbits,
corresponding to satellites, recently (from several days up to
several months) arrived in space, we need the data on major
orbital elements of the parent and on the time of arrival.

2. In case detected orbit is the orbit of satellite, residing in
space for a long time, in addition we need global archive of orbital
data for this satellite, stored for the interval, comparable to the
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interval when the satellite was not tracked.

6. SPECIFIC FEATURES OF THE ALGORITHMS

Treated in the above sections initial conditions, input data and
approaches to solving the task of satellite catalog maintenance lead to
the following specific features of the algorithms used for this purpose
[Refs.9,10].

Analysis of data sources and measurements of Russian network revealed
the following. Certain limitations in observed altitudes, inclinations and
orbital points do exist. Permanent control over low-perigee satellites is not
ensured. Among the measurements of well observed meter-sized objects
-10% of abnormal and rough are present and for small-sized satellites
this percent is greater. The orbit determined using one non-abnormal
measurement is not enough accurate for trackability.

However, using temporally parted measurements and existing accurate
and consistent components, integral amount of data, present in all the
measurements principally allows to track the major part of observable
objects regularly or with certain gaps.

The algorithms must use this principal possibility, i.e. extract this
information from the measurements and "incorporate" it into the orbits
without essential losses.

The algorithms, based on statistical decisions theory [Ref.11] are
informationally efficient.

Characteristic feature of considered task is uncertainty in statistical
description of observations' errors and the "noise" of the system6 . Thus
we are to use special methods of statistical decisions theory, developed for
this case [Ref.12].

In the scope of statistical decisions theory the task of catalog
maintenance is formulated as a task of estimating the amount of
observed satellites and their parameters using measurements' data. In case
informativity condition is satisfied unique solution of this task adequate to

errors in prediction of orbital parameters caused mainly by atmospheric "noise".
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real situation exists. Let us treat some features of the algorithm, realizing
this solution.

1. Final decisions on allocation of measurements to objects and
estimation of orbital parameters (for tracking as well as for primary
determination) are made using analysis in points of minimum of quadratic
functionals 4(a), constructed on normalized residuals of measured and
computed values in "radar" parameters D, e, 7 ,Db, e, "• for various objects.
Together with estimation of "main" parameters7 "interfering" parameters8

are evaluated. Here adaptive Bayes approach is used.
2. Selection of abnormal components of measurements is fulfilled using

multi-pass minimization of 4'(a) with separation (in each pass) of abnormal
components of all measurements using normalized residuals and with
corrections of their weights 9 in D(a). Using results of this selection
hypothesis of non-predictable variations of orbital parameters 10 is tested.

3. Decision regarding affiliating any measurement to a satellite is made
using minimax decision function, providing acceptable probability of
miss 11 under maximal values of errors in possible abnormal components.
Parameters of this function are tuned to provide that in case informativity
condition is satisfied. probability of false decisions won't exceed the
accuracy of the employed model of measurements' errors, i.e. 0.001. In
particular, not greater than 0.001 in probability of unreliable decision 12

in tracking and in probability of miss.
4. For motion predictions we use procedures with methodical errors

not exceeding the maximum of two values: stochastic components of
observations' errors and potentially achievable real errors of prediction.

7satellites' orbital parameters.
8unknown parameters of measurements' errors for various sensors and propagation errors for

various objects, subjected to essential atmospheric drag.
9coefficients of residuals' squares

"°These variations may be caused, for example by ignition of satellite's engines, break-up of
the satellite, significant geomagnetic storms or others

"11not affiliating of measurement to "own" object.
"2The orbit is unreliable in case it is either not determined or it is determined but does not

provide regular tracking of a satellite. Indispensable condition of reliability is the presence of at

least three "inscribed" into the orbit measurements for different revolutions.
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5. Minimization of 4(a) functional uses specially developed techniques
for making initial approximation and search for minimum, taking into
account specific features of real measurements and providing determination
of the minimum point under conditions of tracking and primary
determination not less than in 99.9% and 90% of cases respectively.

6. For primary determination of orbits we realized the procedure
ensuring (for a set of up to 20000 non-correlated with tracked objects
measurements), exhaustive search of observations' triplets with analysis (
for each triplet) of all possible values of coefficient of uncertainty in the
number of revolutions between its boundary measurements, not exceeding
40.

7. Identification of detected orbit with lost objects is based on
comparison with their last elsets. False identification of different objects
and miss of identification are ensured to be of the level less than 0.1% and
10% respectively.

8. Various computation techniques, reducing CPU-time without losses
in quality of decision making and allowing to have computer code capable
of processing arriving observations in real time scale are employed.

The major are as follows:
a) preliminary allocation of arriving measurements to tracked satellites

using rough selection of surely not correlating pairs (satellite-measurement)
according to special three-step three pass scheme and residuals with orbits
prior to their updating using these measurements ("input" residuals1 3);

b) preliminary selection of triplets of non-correlated measurements,
surely not produced by one and the same object, using four parameters,
most accurately calculated using individual measurements;

c) a set of techniques reducing CPU-time without loss of accuracy,
employed in prediction procedures and minimization of functional (D(a).

13contrary to residuals after minimization which can be called "output" ones and are used

for making final decision regarding affiliation of measurements.
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TRACKING SATELLITE BREAK-UPS

Paul W. Schumacher, Jr.
Naval Space Command

Dahlgren, Virginia

INTRODUCTION

Satellite break-ups due to explosion or collision in space can instantly increase the trackable
orbiting population by up to several hundred objects, temporarily perturbing the routine space
surveillance operations at Naval Space Command (NAVSPACECOM) and Cheyenne
Mountain Air Station.
This paper is a survey of some of the techniques and procedures used by NAVSPACECOM to
respond to such events.
First, the overall space surveillance data flow at NAVSPACECOM is described, highlighting
the places at which analysts may intervene with special processing.
Second, brief descriptions of some of the orbital analysis tools available to NAVSPACECOM
analysts are given. These tools have been developed in-house over the past thirty years and can
be used in a highly flexible manner. The basic design philosophy for these tools has been to
implement simple concepts as efficiently as possible and to allow the analyst maximum use of
his personal expertise.
Finally, several historical break-up scenarios are discussed. These scenarios provide examples
of the types of questions that are fairly easy to answer in the present operational environment,
as well as examples of questions that are very difficult to answer.

DATA FLOW FOR CATALOG MAINTENANCE

For the purpose of this discussion, the database of element sets and associated observations
includes analyst satellites as well as regularly cataloged objects. Observations arrive at
NAVSPACECOM from the tracking radars and telescopes operated mainly by Air Force
Space Command and from the NAVSPASUR fence operated by NAVSPACECOM. The
entire collection of sensors is called the Space Surveillance Network (SSN). We discuss the
fence dataflow separately in more detail below because this sensor has special characteristics
that are different from the tracking radars in the rest of the SSN.
The overall dataflow consists of the following steps:

(1) verification of the sensor-level data associations ("tags");
(2) identification of unassociated or mis-associated observations;
(3) update of the database elements;
(4) element-set generation and association for the remaining "uncorrelated
targets" (UCTs);
(5) release of updated elements to the SSN and external users.
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When the Air Force sensors have recently updated elements to track on, they can associate at
least 90% of their observations with database elements. The details of this sensor-level data
association are different for each sensor and are beyond the scope of this discussion. The
remaining 10% must be associated by central-level processing at Cheyenne Mountain
Operations Center (CMOC) and at NAVSPACECOM.

All of the sensor-level associations are verified at the central level. This is a relatively fast
process since only the element set indicated by the sensor needs to be retrived from the
database and propagated to the time of the observation. Well over 99% of the sensor-level
associations agree with the central-level verification and are judged to be correct.

The few sensor-level mis-associations, plus the 10% of total observations that could not be
associated at the sensor level, are passed to the identification process. Here some kind of
comparison with the entire database of elements must be made for each observation. In
practice, we retrieve and propagate element sets for only those orbits that come near the
observed altitude. However, the identification process is still much slower (per observation)
than the verification process. Usually about 94% of the observations presented for
identification can be associated with objects that are already in the database, so the extra effort
is worthwhile. The observations that fail the identification step are passed to the UCT
(uncorrelated target) processing step.

As new observations become available, or at least once per day, an attempt is made to update
each element set. The automatic update is a least-squares differential correction (DC) process
using the most recent element values as the a-priori estimate. On average, about 98.5% of the
element database is updated successfully without human intervention. The least-squares process
may fail or produce poor results for a variety of reasons, so the analysts must examine about
1.5% of the database elements daily. The main tool that they use to do this is "manual
differential correction" (MANDC), which gives them complete discretion over the least-
squares fitting process. Using it, they can accept or reject individual observations, update only a
subset of the complete element set, adjust the number of iterations, and so on. We find that
new analysts acquire proficiency with MANDC only after considerable learning time, so that
human expertise is an essential part of the cataloging system.

FENCE OBSERVATION PROCESSING

The NAVSPASUR fence operated by NAVSPACECOM is a continuous-wave multistatic
radar interferometer deployed along a great-circle arc across the southern U.S. Raw signals
detected at the receiver stations are sampled at an effective rate of 55 Hz for up to one second
as the satellite passes through the fence beam, and then forwarded in real time to
NAVSPACECOM.
Interferometric processing of each signal produces a pair of direction cosines reckoned at the
time of peak signal strength at each individual receiver station. Then the cosines are associated
with cataloged objects in real time by comparing them with pre-computed fence crossings of all
objects in the database. This scheme is feasible because, by design, the fence beam is confined
very near to the great-circle plane. Therefore it is possible to predict, to within nearly the
accuracy of the element sets, when and where each satellite in the database will be detected by
the fence.
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Predictions based on the most recent element set for each satellite are computed for 36 hours
into the future every time the element set is updated, or at least once per day. These predictions
are then sorted in time order and merged with the predictions for all other satellites in a single
prediction database. The fence data association then proceeds in time order as the observations
arrive.
Normally, at least 97% of the fence observations can be associated with known satellites. This
is a noticeably higher percentage than can presently be associated at the sensor level by the
other tracking sensors in the SSN.
When fence observations (directions cosines) cannot be associated immediately with known
satellites, an attempt is made to convert time-correlated lines of sight from all participating
stations into a position fix for the object.
Additionally, a crude velocity estimate is available as a by-product of the interferometry.
Therefore, a complete state vector can be passed to other SSN sensors if we want special
tracking coverage of the object. Meanwhile, the position fix is passed to the automatic
identification process.

UCT PROCESSING

"UCT" stands for "uncorrelated target", an observation or track that has not been associated
with a known satellite. For this discussion, we consider UCTs to be those observations that fail
to associate in the automatic identification process. Ultimately, we must dispose of UCTs either
by (1) associating them with a cataloged element set or an existing analyst element set, or (2)
creating a new analyst element set from the UCT data. Option (1) is still possible after the
automatic identification step because the most recent element set may have been corrupted or
because the element set has not been updated recently and no longer provides accurate
predictions. Of course, it may be that no association will ever be made for some observation,
perhaps because the data is corrupted or because the object has such low probability of
detection that no element set can be maintained. The current practice is to retain all UCT data
for up to 60 days for high-altitude orbits and up to 30 days for near-Earth orbits. Beyond these
timespans, prediction accuracies have degraded so much that the chance of making correct
associations is practically nil.

Whenever the automatic system cannot associate observations with known satellites, orbital
analysts must use special software tools to make the proper data association. Although the
analyst work is inherently slower than real-time, it is still essential to make the correct data
associations as soon as possible. Human expertise built up through long experience has always
been indispensible for this analysis. Moreover, satellite break-up events present special
challenges because many unassociated observations and an unknown number of new satellites
are involved. The number of association hypotheses that may have to be investigated always
goes up exponentially with the number of unassociated observations and rapidly becomes
unmanageable without human expertise to identify the most probable associations a-priori.
Recently, advanced computation and parallel processing techniques have made it possible for
the analysts to consider many more association hypotheses than in the past. Nevertheless,
human expertise is still crucial in the overall management of the cataloging system.

When the automatic identification fails to make associations, the analysts usually try a "manual
identification" first. This involves relaxing the association tolerances in some systematic way to
account for known or expected inaccuracies in the element sets and observations. The tool SID
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identifies position observations (including fence position fixes) by comparing all observations
with each selected element set. The tool IDUAOB identifies angles-only observations
(including fence direction cosines) by comparing all element sets with each selected
observation. If any new associations can be made with these tools, the analysts may use
MANDC to update the respective element sets in the database of known satellites.

If the manual identification cannot associate observations with known element sets, the analyst
must generate new element sets from the UCT data. These candidate element sets are handled
differently from the "analyst" element sets on known objects, because they have little statistical
support. They are really only working hypotheses that may make it possible to associate data
from different sensors or data that are widely separated in time. The candidate element sets are
generated differently, depending on the sensor type.

For radar tracks with sufficiently many observations, it is relatively easy to generate a candidate
element set. The main tool for creating single-track element sets is FORCOM. It can also
compare other tracks and observations with predictions from the candidate element set, and
can differentially correct the element set using observations that do associate with the
predictions. Once FORCOM produces a candidate element set with reasonable statistical
support, two other tools can be used to compare it with element sets on known objects or other
candidate element sets. FNSORT compares two element sets by comparing their predictions.
COMEL compares two element sets by comparing their element values directly. By one tool or
the other, the analyst can usually decide whether two element sets belong to the same object. If
they do, then the observations can be merged and a more refined element set produced via
MANDC.

With fence position fixes and sparse radar tracks, it is not possible to generate sufficiently
accurate single-track element sets. Therefore data that are widely separated in time must be
associated before candidate element sets can be produced. In principle, one could consider
generating all possible candidate element sets from the entire database of UCT observations.
The tool SAD implements this approach. It takes a set of UCT observations selected by the
analyst and generates an orbit through every possible pair of positions. Essentially, it solves
Lambert's problem including secular perturbations. SAD also refines each candidate orbit in the
same way that FORCOM does, so that finally some candidate orbits with reasonable statistical
support are produced. These can be examined more closely with FNSORT and COMEL.
Ultimately, the analyst may be able to produce some refined candidates via MANDC.

The only difficulty with SAD is that it generates a combinatorially large number of candidate
orbits and compares each of these against the entire set of UCTs presented to it. In its original
form, it required so much computation time that the analysts could not use it for the entire
30-day or 60-day collection of UCTs. The simple expedient of limiting the input to 5 days of
UCT data (which still required several days of execution time!) did not work well. With such a
short span of data, few orbits with reasonable statistical support could be produced. Instead,
the analysts had to find ways to manually select UCT observations from the 30-day or 60-day
time span that had high probablity of originating from a small number of objects.
Several graphical tools were created to help with this selection job.
PLUME allows the analyst to select observations based on visual correlation in a plot of time
differences relative to predictions from a reference (or "parent") element set.
TRIPLT allows the analyst to select fence position fixes based on visual correlation in a plot of
fence data.
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RAQUAD allows the analyst to group fence position fixes together by helping him find
sequences of constant difference in right ascension with altitude constraints.
All of these tools have found some use, but none has provided a real solution of the problem.
Of the three, PLUME finds the most use and works fairly well (in skilled hands) for finding
pieces that have separated at low relative velocity from a parent satellite. But the real problem
has always been that SAD inherently requires vast computations.
Recently, a parallel version of SAD was implemented at NAVSPACECOM on a cluster of 11
medium-performance workstations. It is able to process 30 days of UCT observations in about
half a day and always produces a large number of candidate orbits with good statistical support.
The reference by Coffey, et al., 1996, describes the parallel algorithm. As of July 1996, the tool
is still being tested and qualified for operational use, but is already considered a breakthrough
in UCT processing. It was used to process the Pegasus upper-stage break-up which occurred
on 3 June 1996, a very timely application because that event turned out to be the largest
satellite break-up to date (over 670 trackable pieces).

There are two other tools which are especially useful for satellite break-ups. COMBO finds the
times and locations at which the distance between selected satellites is a local minimum.
COMBO is used routinely when a break-up is suspected to see if the satellite in question could
possibly have collided with a known object.
Similarly, BLAST computes the time and position of a satellite break-up once sufficiently many
element sets for the pieces have been produced. It straightforwardly searches for the times at
which the predicted positions cluster together and gives a statistical characterization of each
cluster. Once the break-up time and position have been found, SAD can produce elements
quite rapidly for all the remaining pieces that have been tracked. It does this by constraining all
the candidate orbits to pass through the break-up position so that the number of candidate
orbits is no longer combinatorially large.

Finally, some relatively new tools have been developed for historical analysis of the element set
database. GOBS displays time histories of cataloged elements with analyst elements or UCT-
derived elements superimposed. This allows the analyst to identify lost or mistagged objects.
GOBS can also make reasonably accurate long-time predictions (on the order of years) for
geosynchronous satellites, which aids UCT processing for that orbital regime.

HISTORICAL EXAMPLES OF SATELLITE BREAK-UPS

A few brief case histories are worth considering. More detailed information on all these case
can be found in the reference by Grissom, et al., 1994.

1. TIROS N (11060)

This case illustrates the easiest possible break-up scenario. Single pieces separated from the
parent satellite far apart in time so there was no uncertainty about which objects were the
origin of the observations. Moreover, the orbits happened to be accurately represented by the
current operational model. The satellite was operational from 13 October 1978 to 1 November
1980. At its altitude of over 800 km, it was expected to have a lifetime of about 350 years.
Hence, any debris generated at this altitude could become an essentially permanent concern.
Two pieces separated from the satellite in late 1987, on 28 September 1987, 1658 UT, and 4

178



October 1987, 2107UT, respectively. The analysts have high confidence in these times because
the orbits were well determined and easy to predict. Interestingly, both pieces decayed during
the winter of 1988-89, while the parent object still has a predicted lifetime over 300 years. This
illustrates a common feature of break-ups, namely, that the fragments often decay much faster
than the parent and consequently have very dissimilar body characteristics.

2. COBE (20322)

The Cosmic Background Explorer is in a sun-synchronous orbit similar to that of TIROS N.
Beginning in January 1993, at least 12 well-defined single-piece separations were discovered
over a 1-year period. Again, for the same reasons given above, the analysts have high
confidence in the times of the separations.
Remarkably, however, the operators of the satellite noticed no anomalous behavior of the
payload. By mid 1994, 40 pieces originating from COBE had been cataloged and were still in
orbit, while the payload continued to function normally.

3. COSMOS 1823 (17535)

This was a geodetic satellite deployed at about 1500 km altitude. The break-up was especially
interesting at the time because this type of satellite had few energy sources on-board that could
explain the apparent explosion.
The break-up occurred on 17 December 1987. The first piece count was 22, made by the
PARCS phased-array radar in Cavalier, North Dakota, in tracks taken between 2105UT and
2115UT. Between 2305UT and 2319UT, NAVSPASUR detected 35 pieces. Although the
pieces remained relatively close together, analysis on 18 December 1987 produced 10 element
sets and a probable "blast" point. NAVSPASUR analysts were also able to identify the main
piece of the payload as that .fragment with the orbit most similar to the parent object. By 3
weeks later, on 7 January 1988, 175 element sets had been generated and 33 had been
cataloged. By mid-1994, 110 pieces had been cataloged and 44 were still in orbit.

4. COSMOS 1405 (13508)

This case presented some special difficulties for the break-up analysis that are typical of low-
altitude break-ups. The satellite apparently exploded at 1214UT on 20 December 1983, at an
altitude of 337 km. The "blast" point turned out to be relatively well-determined with a
standard deviation of 6.5 km in position.
The first NAVSPASUR piece count showed 67 pieces crossing the fence between 1929UT and
1936UT on the same day, between 95 degrees and 102 degrees west longitude and between
247 km and 432 km altitude. However, it was difficult to generate orbits. All the pieces had
high decay rates, and many re-entered before they could be adequately tracked. Moreover, the
differential decay between pieces caused them to change their "parade order" between
consecutive fence passes, making it difficult to make the correct associations.
By 2 weeks after the break-up, only 1 or 2 UCTs per day were being associated with this
event, so it was not a serious operational problem. However, only 24 element sets were
generated. Many of these were likely to have been spurious artifacts created by incorrect
associations, and none of them were cataloged.
In the end, only 32 objects were cataloged and none remained in orbit by mid-1994.
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5. EKRAN2 (10365)

This case is revealing, because the break-up was first known to American personnel 14 years
after it happened. EKRAN 2 apparently suffered an explosion on 23 June 1978 in
geosynchronous equatorial orbit at 98.7 degrees east longitude.
The fact was communicated by Russian engineers and scientists in discussions with American
space surveillance personnel in 1992. The SSN had been, and still is, unable to detect debris
from the event.

6. TVSAT-1 and COSMOS 1646 (15653)

This case raised serious concern for the first time that a collision with untrackable debris had
disabled a payload. In retrospect, such a collision appears very unlikely but the case is unusual
nevertheless.
COSMOS 1646 broke up at 013 lUT on 20 November 1987 at about 430 km altitude. By 21
November, the piece count was up to 50. Meanwhile, the payload TVSAT-1, an expensive
joint European venture, was injected into geosynchronous transfer orbit at 0235UT on 21
November, at nearly the altitude if the COSMOS break-up.
The payload separated from the Ariane third stage at 0238UT and 30 seconds later crossed the
plane of the COSMOS orbit. At 0244UT, the first payload anomaly appeared: a solar panel
failed to deploy properly. Between 0530UT and 0726UT, the Ariane third stage was tracked
by the ALTAIR radar on Kwajalein and was observed to have a very low thrust acting on it.
The transfer orbit had been designed so that the upper stage would remain in orbit with a
perigee altitude of about 179 miles. However, the low thrust caused the stage to make an
unscheduled re-entry into the Pacific Ocean on the first revolution at 1249UT.
Some scientists speculated that small debris may have caused both the payload malfunction and
the third-stage anomaly. NAVSPASUR analysts performed a COMBO analysis and found that
both the payload and the rocket body did penetrate the envelope of the trackable COSMOS
debris but did not come closer than 103 miles to any known piece.
24 pieces of the COSMOS were finally cataloged but all soon decayed, putting the whole case
beyond further investigation. Of course, collision with small debris cannot be ruled out
absolutely. However, it is considered very unlikely by all analysts who were involved in the
analysis.
The payload eventually arrived on-station and was reported to be functioning normally. The
Ariane vehicle had been suffering a series of technical problems at the time, but because the
unscheduled re-entry caused no harm, the potential legal case about financial liability never
materialized.

7. Clementine Rocket Body (22974)

The Clementine payload was injected into a circular parking orbit at 258 km altitude by a Titan
II second stage on 25 January 1994. The payload itself proceeded on to the Moon successfully.
However, the Titan stage broke up at 1719UT on 7 February 1994. The blast point was well
determined with a standard deviation of 3.5 km, based on 26 orbits generated within 12 hours
of the event. The early piece count by the fence was high: 364 pieces spread over altitudes of
200 km to 850 km, signifying an energetic event. Much concern was raised over the fact that
both the Space Shuttle and the Mir space station passed through the debris cloud many times.
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The Titan manufacturer intially reported that, although the second stage contained hypergolic
propellants, the structural design precluded an inadvertant explosion. Some program officials
alleged that a collision with untrackable debris was more likely than an explosion. No final
report on the cause has reached NAVSPACECOM, and claims of collision have not been
pursued, at least in the open literature. Meanwhile, 45 element sets were generated. None were
cataloged, and no trackable pieces remain in orbit.

CONCLUSIONS

Based on the discussion thus far, we can make a few general conclusions. There are some
tracking and cataloging problems that are readily solved by the current space surveillance
system. It is relatively easy to determine the time and location of satellite break-ups by the
orbital-mechanics techniques outlined here, and it is relatively easy to get a good piece count.
Of course, we have to wait until the pieces have separated sufficiently, which usually occurs
within a half a day to a day. But the fact remains that we can maintain the near-Earth catalog
quite reliably, even when large break-ups occur.

On the other hand, there are some problems that we are not well equipped.to handle with the
current surveillance system.

(1) It is very difficult to compute a reliable blast point immediately or within only several hours.
The tracking coverage is not complete enough to produce the necessary observations that
quickly, nor are the data association techniques good enough to produce reliable orbits for
closely spaced pieces.

(2) We do not have the tracking capacity, timeliness nor accuracy to support precise
conjunction calculations.

(3) We are unable at present to estimate the hazard to satellites of interest from untrackable
debris. Efforts to extrapolate from the trackable population have not given satisfying results. It
might be added that neither are we yet in a good position to assess the risk from trackable
debris.

(4) We have very limited capability to detect and track break-ups in geosynchronous equatorial
orbit and geosynchronous transfer orbit.

(5) We have never faced the situation in which we have multiple overlapping break-ups to
catalog. It has always been possible for analysts to associate a UCT with the correct parent
object once it has been determined that a break-up is in progress. With multiple simultaneous
break-ups, this will no longer be true, especially if the break-ups occur in the same orbital
plane.

Naturally, this list is not comprehensive. But it does illustrate the fact that there is plenty of
room for improvement in current space surveillance operations.
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NAVSPOC Software Tools for UCT and Break-up Processing

SID Position observation identification by comparing all observations with each se-
lected element set.

IDUAOB Angles-only observation identification by comparing all element sets with each
selected observation.

TRIPLT Association of "unknown" fence position estimates by visual correlation in a
plot of selected data.

RAQUAD Association of "unknown" fence position estimates by a search for sequences
of constant difference in right ascension, with altitude constraints.

FORCOM Orbit determination (element set generation) from single tracks of position ob-
servations, plus DC against selected "unknown" observations.

SAD "Search and determine". Orbit determination (element set generation) from all
possible pairs of selected "unknown" position observations (secular-perturbed
Lambert solution), plus DC against all the remaining "unknown" observations.

FNSORT Comparison of position observations with selected element sets, based on alti-
tude constraints and closeness to each orbital plane. Optionally, compares ele-
ment sets with element sets.

COMEL Comparison of element sets to detect matches or duplicates in a selected list.

BLAST Compute break-up time and position using predictions from selected element
sets, by searching for times at which the predictions cluster together.

COMBO "Computation of miss between orbits". Search for the times and locations of all
close approaches between selected satellites, using predictions from two differ-
ent lists of selected element sets.

GOBS "Geosynchronous orbital belt study". Display historical plots of "known" ele-
ment sets with "unknown" element sets superimposed, to try to identify lost,
mistagged or "unknown" satellites.

MANDC "Manual differential correction", in which the analyst has complete control
over the least-squares fitting process. Data can be retained or rejected at will,
any subset of a complete element set can be updated, arbitrary initial guesses
for the solution can be used, and the convergence tolerances can be adjusted in
any manner.
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Glossary

SSN Space Surveillance Network, made up of the fence operated by Naval Space
Command, mechanical radars operated by the Army, and a variety of phased-
array radars, mechanical radars and opticWl telescopes operated by Air Force
Space Command.

obs Metric observations of satellites (tracking data).

els Orbital element sets (equivalent to state vectors).

fence The NAVSPASUR multistatic continuous-wave radar interferometer, a unique
space surveillance instrument whose fan beams lie in a great-circle plane in-
clined at about 33 degrees to the equator and extend across the southern United
States. Coverage is continuous continent-wide, extending well out over both
oceans and nominally to about 15,000 miles altitude.

DC Differential correction, which produces updated orbital elements based on new
tracking data by means of a least-squares estimation process.

UCT "Uncorrelated target", an observation or trial element set which has not been

associated with a "known" satellite.

"tag"' The satellite number in the space object catalog.

UT Universal Time, formerly known as Greenwich Mean Time or "Zulu" time.

GEO Geosynchronous equatorial orbit.

GTO Geosynchronous transfer orbit.

LEO Low Earth orbit.

NAVSPOC Naval Space Operations Center at Naval Space Command, Dahlgren, Virginia,
where Naval activities in space surveillance are headquartered.
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UNIVERSAL SEMIANALYTIC SATELLITE MOTION

PROPAGATION METHOD

V. Yurasov

SRC "Kosmos"

1. Introduction

The considered universal semianalytic method was developed
and realized as a software on computer about 15 years ago. Basically it
is used for testing specialized algorithms and programs for space

object(SO) motion prediction in the RSSS. Besides it is applied for
processing the measurement information on geostationary space
objects, and also in works, connected with the ballistic maintenance of
special important objects. Same examples of such work were the
reentry of an orbital complex "Salyut-7" - "Cosmos- 1686", satellites
"Cosmos-398" and FSW-1-5. In this paper the basic principles of
construction of a method are stated and estimations of the
characteristics of its speed and accuracy are given.

The universality of the method is understood here as its
suitability and flexibility for precision orbit prediction for various
heights, eccentricity and inclination. The universality is achieved by
choice of nonsingular orbit elements and taking into account
perturbatons from the Earth gravitational field, atmosphere drag, solar
pressure, attraction of the Moon and Sun in the most general form.

The basic idea of semianalytic methods consists in separation
slow and fast variables in the equations of space objects motion. Slow
variables determine the form and orientation of an orbit in space. Fast
variables characterize a movement of SO along the track and relative
to the Earth. To separate fast and slow variables in the equations of
motion a number of methods [1-3] are applied. Here an averaging
method[1] was used.

2. Averaging method

The averaging method [1] is applied to the solving of systems of
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ordinary differential equations, which are characterized by presence of
slowly and quickly varying variables and periodicity of the right parts
in relation to fast variable. More simple is the application of this
method for systems with one fast variable. We shall consider this case
as it is rather widespread: on account of zonal harmonics of
geopotential, of atmosphere drag and both attraction of the Moon and
Sun the SO motion is described by the equations with one fast
variable:

dcd - = E, (X2 M) + 62 X2 (X, M)+...,
dit (1)
atf -n(x) + -Yj(x,M) + 2Y2 (x, M)+...

di
where x = (a, e, i, w, ),

x, x2,...- vector functions,

Y1, ,Y2....- scalar functions,

8 - the small variable, for which is usually considered
coefficient at the second zonal harmonic of geopotential.

In the method of averaging [2] with the help of replacement of a
variable like

x= x +.6U,(x,M)+6 2U 2(x,M)+..., (2)
M = +6V+(x,M)+ 62VJ(x,M)+...,

the initial system of the motion equations (1) is reduced to the
average system, containing no fast variable in the right parts:

dx &t - 1 (X) + 62 A2(-X)+...
dt (3)
dM 1()6B(dt= n( x) + &B, (x + " B )+...
dt

The averaged system can be integrated analytically or
numerically, but already with a much more large step, than initial
system (1). Just due to this the semianalytic methods have gain in
speed before numerical one.

The functions A, A2 ,B1,B 2 ,U 1,U2,1V,... in the averaging method
are defined in the following sequence:
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A1(x) = +J do f
1

V, (XM) = =1Jf (+XI - A B1)da + U V1 (),

BI(X) = -f(Y. + onu,),m,

di(iM£ .X'(eV'
= + v -- AB,) +-V,°(B,)),f

-------i ---rB

2; 0

B, (XP) = =f (Y. + -U, - )6 + V,0 -

oI"2x67 lo+ x -
142f V +j =_U - L--=-2IA + =UV2-_B)dA!,

21_0_o 1 6 R AM-

U2 '• (X f(, +•Z U - u,,vA += u,-=,-A)M ,20W

0M j=, 1 k=1

and etc., where U,0(X),V, 0(i),U(),...- same functions, dependent

from slow variables. It is possible to show that if these functions are
identically zeros, the averaging method gives the same solution, as the
Zeipel method [2]. However, unlike the last method an averaging
method is applied not .nly to canonical systems of the differential
equations.

Thus, the solution of the problem Cochi for system of the
differential equations of SO motion (1) by use of a averaging method
is made in three stages:

1. Calculation of mean elements x(to), M0 0) from osculating
elements x(to),M(to), given in an initial moment of time to, i.e.
exception of short-periodical perturbations according to the
formulas (2) in a moment to is made.

2. By numerical integration of the averaged equations with a
large step on an interval [tO,tk] the mean elements X(tk), MQk) at
the moment of time tk are determined.

3. With the help of formulas (2) osculating elements Xtk0), M(tk)

are calculated on the base of of mean elements X(k) M(tk),

timed to the final moment tk, i.e. calculation of short-
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periodical perturbations for this moment tk is made.
It is should be noted, that if the mean elements are used instead

of osculating elements as estimated parameters at orbit determination
on measurements, the first stage of calculations is excluded. Thus, by
use of semianalytical methods additional economy of computing
expenses can be reached.

In [1] it is shown, that the solution 1-3 when using above
algorithm of construction of the functions has an error of o(6 k) order
with respect to the slow variables and o(.k-I) with respect to the fast

variable on an interval of time t - 1, where 6e - the order of terms,

kept in the right parts of system (2).

3. Nonsingular orbit elements

As dependent parameters in the SO motion equations in the offered
method nonsingular system of elements x =(a,, i7,P,Q,2) is used:
4%=ecosir, r7=esinr,

i i
P=sin-cosn, Q=sin-sinQ, (5)

2 2

where
a - axis,
i - inclination,

Co - argument of perigee,
Q- longitude of ascending node,
M - mean anomaly.

As independent variable time t is used.
It is known, that the perturbation functions can be expressed

directly through nonsingular elements of orbits (5). However in such a
case the significant problems arrive with respect to getting effective
fast algorithms. Therefore we decided to use the keplerian elements
both in construction the relationships and in producing the software.
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Let
da de 1 idi

Al==-P A2 =-, A 3 =cos-,
dr id.Q dA

A4 =e- di A5 =sin 2 d, A6 =- -&n,

5A, =8a, 8A 2=8e, 8A3 =•-Cos - i,

i (7)
8A 4 =e8;r, 8A5 =sin 2-80, 6A6 =82,

where n is the mean motion.
Then

da dA

dt •"A' &=n+A6'd
d A2 cosr-A sin -=A 2 sinyr+A cos&r, (8)
dt d

-d_=A3cosf_-Assin. ddrA 3 sinf2+AscosK"

Sa=gAk, 82=8A6,
85=JA2cosr-gA4 sinx, i7= Asinr+A4 scov, (9)
SP=8A3 cos-8A5 sin, iQ=8A3 sinQ+ A5 cosQ

4. Perturbations account

Common information about the considered perturbation factors
are presented in table 1.

It is known that the basic advantage of semianalytic methods
against numeric ones is large speed and high enough accuracy. At the
development the universal semianalytical method this advantage is not
so simply attainable. For this purpose it is required to receive special
representation of expressions for the right parts of the averaged
equations and short-periodical perturbations.
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Table 1. The characteristics perturbations considered
Perturbations Short-periodical Averaging equations

perturbations
Second zonal harmonic(C2o) First order linear First and second

terms in -, q, P, Q, order terms relative to
X; C20

* second order
terms in a.

Harmonics im Linear terms in general Linear terms,
of geopotential(2 _lls. form including resonance

0Osm.:l, lm20) effects in general form

Attraction of Moon and Sun Linear terms in general Linear terms in
form general form

Atmosphere drag (density No Linear and cross with
model GOST 25645.115-84) C2o terms

Solar pressure No Linear terms of direct
I I__ Isolar pressure[4]

These expressions have the following structure:
* for a case of the account of zonal harmonics

r-i

A, 2 = n Q Qi)(ae,i) J(ko); (10)
k=0

• for a case of tfie account of resonance perturbations
I I r+1

A1  nZZ : C5(,(a,e, i) S,(o, ,M,(), (11)
r=l m=1 q=r-[

for a case of the account of perturbations from the Moon and
Ik I I

Sun A, - (12)
1=2 m=0 p--0

* for a case of perturbations from atmosphere drag and solar
pressure A, =n•fy")(a,e,i)S(eoj), (13)

k

For all perturbation forces expressions for calculaton of the right
parts of the averaged equations are given as a sum of products of
functions, dependent on a axis, eccentricity and inclination, and of
trigonometrical functions, dependent on argument of perigee,
ascending node and mean anomaly. As the axis, eccentricity and
inclination do not experience perturbations of the first order relative to
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C20, the functions from these variables will be changed slowly. Use of
spline approximation for these functions instead of labourious
calculation of their values by complex formulas at each step of
computation of the right parts of the .averaged equations gives
significant labour-saving effect.

The similar representation is used also for calculating account of
short-periodical perturbations. So, the formulas for calculation of
perturbations from a geopotential of the Earth look as follows

q 1 q+1

A = 1 1 E(C,. (a,e, i)cos ,+.D.(a,ei)sin)(14)
9-i7 n,=O k=q-l 14

p= ka +(k +q)M+m(Q-G).

5. Accuracy and speed estimation

The estimation of accuracy and speed of the method was carried
out for five categories of SO orbits. The description of these categories
of orbits is given in table 2. In the same table data on amount of
estimations chosen for realization of orbits and theeir inclinations,
eccentricities and heights ranges are resulted. All elements of orbits
for realization of estimations were chosen from the real catalogue of
space objects.

Table 2. Categories of orbits
Category Name Eccentricity Inclination, Perigee and apogee , Number of
number deg altitudes, km orbits

1 Low Earth Orbit 0.00-0.03 25-98 175-420 34
206-580

2 Medium Earth 0.00-0.09 23-115 450-1200 353
Orbit 550-1900

3 Half-day Period 0.00-0.02 53-65 19340-20250 30
Circular 20220-20700

4 Half-day Period 0.50-0.74 16-70 700-6400 114
Eccentrical 3400041000

5 Geostationary 0.00-0.02 0-16 34500-36000 432
1_ 35500-36600

The estimation of the characteristics of the universal
semianalytical method was carried out on the basis of comparison of
prediction results with results of numerical integration of the motion
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equations in cartesian coordinates by the method Everchart [5,6]. The
prediction interval for all realizations was chosen equal to 50
revolutions and the comparison of results was spent on the fiftieth
revolution in ten points, in regular intervals distributed on orbits. The
methodical errors of a semianalytic method were estimated in orbital
system of coordinates. The radial (R) and binormal (W) errors were
expressed in kilometers, temporary errors along the track (t) - in
seconds. As for low-earth-orbital objects of an error along the track
much depend on a atmosphere drag, for reception of similar statistical
data, allowing to receive a more objective estimation of correctness of
the account of perturbations due to atmosphere drag, normalized
nondimensional parameter was used

St,8= -1oo0, (14)
At

where At - value of perturbation of a SO motion along the track
due to the atmosphere drag.

The data on distribution of methodical errors of a semianalytic
method are submitted on figure 1 - 5:

On fig. 1 - for low-earth-orbital space objects;
On fig. 2 - for medium-earth-orbital space objects;
On fig. 3 - for half-day period circular space objects;
On fig. 4 - for half-day period eccentrical space objects;
On fig. 5 - for geostationary space objects.
Maximum values of universal semianalytic method errors and its

run time evaluation are resulted in table 3. From submitted data
follows:

* The methodical errors of the account of atmospheric
perturbations by use of a semianalytical method do not exceed
5%. It is a quite allowable level of errors, as accuracy of account
of density of atmosphere for modem atmosphere models density
makes 10-30 %.
* As for medium-orbital, and for high-orbital circular space
objects the maximum prediction errors on a radial and binormal
direction have approximately one level and make about 30-50
meters. The errors along an orbit for these space objects reach
0.1-0.3 second and have linear character from an interval of
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forecasting. They are explained first of all by incomplete
exception of short-periodical perturbations at transition from
osculating elements to average (2). At processing real
measurements this maintenance is .compensated at the expense
of the appropriate correction of estimated parameters.
• For eccentrical orbits a level of errors in 2-3 times more. This
fact is explained by that in a universal semianalytic method
decomposition on average anomaly is used which poorly
converges at large eccentricities.
The universal semianalytic method at long-term motion

prediction of circular orbits is ten times as fast than the numerical
method. For eccentrical orbits the gain in speed much less and makes
2-3 times.

Table 3. Characteristic of maximum methodical errors and speed
Category maxISRj, km mnax189J, km max 811, rnaxII, % Gain in run
number sec time

1 0.10 0.05 - 4.5 z25
2 0.02 0.03 0.10 - Z15
3 0.010 0.005 0.012 - s10
4 0.15 0.08 0.56 - _3
5 0.02 0.04 0.30 - W10
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Figure 1. Distribution of methodical errors on a radial,
binormal directions and along the track for low-earth-orbital SO
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Figure 2. Distribution of methodical errors on a radial, binormal
directions and along the track for medium-orbital space objects
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Figure 3. Distribution of methodical errors on a radial, binormal
directions and along the track for half-day period circular space

objects
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Figure 4. Distribution of methodical errors on a radial, binormal
directions and along the track for half-day period eccentrical

space objects
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Figure 5. Distribution of methodical errors on a radial, binormal
directions and along the track for geostationary space objects
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U.S. RUSSIAN SPACE SURVEILLANCE WORKSHOP

SUMMARY AND CONCLUSIONS

In the closing discussion of the workshop, everyone concluded that the presentations
were very useful. Both countries are seeking to solve the same problems and the truth is
unique; however, different approaches are being taken. The work by the Russians on
modeling atmospheric effects and using observations to generate real time corrections for
atmospheric drag is particularly interesting. Similarly, the use of workstations and parallel
processing by the US was of special interest.

It was suggested that we might identify common problem areas as cases for future
discussions and communication between workshops. These are cases where both organizations
have difficulty individually, or where cooperation could be immediately beneficial. The
following items were identified for future attention:

1) Immediate answers concerning breakups or explosions in space.

2) Tracking breakups in GEO/GTO orbits.

3) Multiple simultaneous or overlapping break ups.

4) Calculation of dangerous conjunctions.

5) Untrackable hazards to other satellites.

6) Comparison of methods of orbit predictions used by Naval Space Command,
Air Space Command, and Russian Scientific Research Center "Kosmos",
and IAC "Vympel".

7) Reentry time and location predictions.

8) Comparison of atmospheric density modeling and parameter values.

9) Tests of comparable atmospheric models.

10) Creation of an observational database for long time periods for geostationary
satellites. SRC "Kosmos" and Institute of Theoretical Astronomy (ITA) has
initiated this activity in Russia.

11) Test methods of evaluating observational accuracies. Some Russian satellites have
laser reflectors which could be used for calibration.

12) Comparing techniques of uncorrelated target processing.
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13) Exchange observations of specific passive satellites.

14) Regular comparison of catalogs and resolution of differences detected.

15) Criteria for including objects in the catalog, especially intrackable or intermittently
observed objects.

16) Add to catalogs or establish a separate catalog containing more information about
objects; history of objects, technical make up of objects, subsystems.

17) Compare or develop models of breakups, circumstances that lead to breakups,

breakup results analysis.

18) Exchange orbit model software for testing purposes.

19) More close cooperation between the RSSS and the US SSN in operational works
on reentry SO, SO in contingency and other risk SO.

It was agreed that having specific people from each country identified to work on a
specific topic would be the best way to accomplish progress between workshops. To
accomplish this, it was agreed that communication would be maintained regularly between Dr.
Stanislav Veniaminov and Dr. Kenneth Seidelmann and that individuals would be sought from
each country to actively pursue cooperation on the given items.

Everyone agreed that the workshops are mutually beneficial. There is a need for the
participants to get to know each other better; there are times when we don't understand each
other, due to technical, linguistic, and cultural differences. However, from the two workshops
it's clear that the communication is improving and that detailed exchanges on specific subjects
would be beneficial to both countries.

G. Batyr and S. Veniaminov wrote in the review of joint activity in the proceedings of
the workshop of 1994: "One of main and paramount objectives of our cooperation we
consider adjusting sound contacts between US and Russian SSS both on the level of technical
specialists and on the level of heads and leaders. And generally, it is a sheer abnormality and
even indecency in the whole world there exist only two so powerful and unique space
surveillance systems - yours and ours and between them there are no interaction. This situation
should be urgently corrected".
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